
Real-Time Execution of Action Chunking Flow Policies

Kevin Black1,2, Manuel Y. Galliker1 Sergey Levine1,2

1Physical Intelligence 2UC Berkeley
{kevin,manuel,sergey}@physicalintelligence.company

Abstract

Modern AI systems, especially those interacting with the physical world, increas-
ingly require real-time performance. However, the high latency of state-of-the-art
generalist models, including recent vision-language-action models (VLAs), poses
a significant challenge. While action chunking has enabled temporal consistency
in high-frequency control tasks, it does not fully address the latency problem,
leading to pauses or out-of-distribution jerky movements at chunk boundaries.
This paper presents a novel inference-time algorithm that enables smooth asyn-
chronous execution of action chunking policies. Our method, real-time chunking
(RTC), is applicable to any diffusion- or flow-based VLA out of the box with no
re-training. It generates the next action chunk while executing the current one,
“freezing” actions guaranteed to execute and “inpainting” the rest. To test RTC, we
introduce a new benchmark of 12 highly dynamic tasks in the Kinetix simulator,
as well as evaluate 6 challenging real-world bimanual manipulation tasks. Results
demonstrate that RTC is fast, performant, and uniquely robust to inference delay,
significantly improving task throughput and enabling high success rates in precise
tasks—such as lighting a match—even in the presence of significant latency. See
https://pi.website/research/real_time_chunking for videos.

de
g

Position

Time (s)

de
g/

s

Velocity

de
g/

s²

Acceleration

Real-time chunking (ours)
Synchronous
Temporal ensembling (Zhao et. al.)

Figure 1: Top: Real-time chunking (RTC) enables the robot to perform highly dexterous and dynamic tasks,
such as lighting a match—even in the presence of inference delays in excess of 300 milliseconds, corresponding
to more than 30% of the model’s prediction horizon. Bottom: RTC performs the same robot motion 20% faster
than synchronous inference [5, 30, 8, 24, 31, 59], and smoother than all competing methods, including temporal
ensembling [68]. The shown positions, velocities, and accelerations correspond to the shoulder joint of one arm,
and are taken from the first 10 seconds of a real autonomous match-lighting rollout.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://pi.website/research/real_time_chunking

1 Introduction

As AI systems have become more capable, they have also interacted more and more directly with their
environment. Whether they’re executing terminal commands [45], playing Pokémon on livestream
[20], or browsing the web on your behalf [65], recent advances—driven primarily by large-scale
deep learning—have enabled these systems to increasingly control, rather than merely process, the
vast heterogeneity of the outside world. Embodied agents, where machine learning models directly
control real, physical constructs, are perhaps the quintessential example. The same advances fueling
agentic language and vision models are also making great strides in physical intelligence on platforms
ranging from humanoid robots [4] to autonomous cars [60].

Cyber-physical systems, unlike chatbots and image generators, always operate in real time. While a
robot is “thinking”, the world around it evolves according to physical laws. Thus, delays between
inputs and outputs have a tangible impact on performance. For a language model, the difference
between fast and slow generation is a satisfied or annoyed user; for a robot action model, on the other
hand, it could be the difference between a robot handing you a hot coffee or spilling it in your lap.

Unfortunately, the effectiveness of modern large-scale machine learning comes with high latency
as an unavoidable side effect. Large language models (LLMs), vision-language models (VLMs),
and vision-language-action models (VLAs)—the last referring to a class of models designed for
visuomotor control—have billions of parameters [8, 30, 5, 4, 58]. These models are not only slow to
run, but also require heavy-duty hardware that is difficult to attach to edge devices such as mobile
robots, adding even more overhead for remote inference. Edge hardware will improve over time, but
as robot datasets grow in size, so will the best VLAs [28].

Thus, applying large models to real-time control problems effectively will require some form of
asynchronicity: that is, a model must think about its future actions while executing a previous one.
Action chunking [68, 33, 11], where a model outputs and executes a sequence of multiple actions for
each inference call, presents a partial solution. Although action chunking has already achieved many
state-of-the-art results in dexterous manipulation [5, 4, 58], it still suffers from the latency problem.
Chunking sacrifices the reactivity of a system to external stimuli and also introduces discontinuities
in the transition points between chunks, as adjacent chunks may jump between different modes
(or “strategies”) from the learned action distribution. Such anomalies are especially harmful to
learning-based systems, as they produce a distribution shift in dynamics that the model is likely not
equipped to handle. Naive smoothing strategies, such as averaging multiple predictions together [68],
are not guaranteed to produce valid actions and may only make matters worse (e.g., see Figure 2).

A good real-time system must produce a consistent and continuous control signal, incorporating
the latest observations without perturbing the environment’s natural dynamics or the model’s ability
to produce correct actions. In this work, we present real-time chunking (RTC), which poses
asynchronous action chunking as an inpainting problem. Our algorithm generates the next action
chunk while executing the previous one, freezing the actions that are guaranteed to be executed (due
to inference delay) and “inpainting” the rest. It is applicable to any diffusion- [22] or flow-based [36]
VLA, and operates purely at inference time, requiring no changes to existing training recipes.

Our contributions are as follows. First, we present a novel system for asynchronous, real-time
inference of action chunking diffusion- or flow-based policies for continuous control. Since standard
simulation benchmarks are quasi-static—and have mostly been saturated with pseudo open-loop
inference strategies [11]—we devise a new benchmark based on the Kinetix simulator [43] consisting
of 12 highly dynamic manipulation and locomotion tasks. In the real world, we evaluate RTC on 6
challenging bimanual manipulation tasks using the π0.5 VLA [24] as the base policy. Across both
simulation and the real world, we demonstrate that RTC is fast and performant; it is uniquely robust
to inference latency, even in highly precise tasks such as lighting a match (Figure 1), and it achieves
greatly improved task throughput on all real tasks.

2 Preliminaries and Motivation

We begin with an action chunking policy denoted by π(At|ot), where At = [at,at+1, ...,at+H−1]
is a chunk of future actions, ot is an observation, and t indicates a controller timestep. We call
H the prediction horizon. When action chunking policies are rolled out, only the first s ≤ H
actions from each chunk are executed. We call s the execution horizon; often it is shorter than the

2

prediction horizon, but still much greater than 1 (e.g., s ≈ H/2 [11, 5, 24]). Chunked execution
ensures temporal consistency at the expense of reactivity. A long execution horizon reduces a policy’s
responsiveness to new information, while a short one increases the likelihood of mode-jumping, jerky
behavior resulting from discontinuities between chunks.

In this paper, we consider policies trained with conditional flow matching [36], though our method
can also be used with diffusion policies by converting them to flow policies at inference time [48, 18].
To generate an action chunk from a flow policy, random noise A0

t is first sampled from a standard
Gaussian, and then the flow’s velocity field, vπ (a learned neural network) is integrated from τ = 0
to 1 using the update rule

A
τ+ 1

n

t = Aτ
t +

1

n
vπ(A

τ
t ,ot, τ), (1)

where τ ∈ [0, 1) denotes a flow matching timestep, and n determines the number of denoising steps.

a0 a1 a2 a3 a4 a5 a6 a7 a8
a9

a10
a11

a12
a13

a14
a15

a′4
a′5

a′6 a′7 a′8 a′9 a′10 a′11
a′12

a′13
a′14 a′15

naive async

inference finishes

inference starts

inference delay, d

temporal

ensemble

obstacle

A0

A4

Figure 2: An illustration of a typical bifurcation be-
tween consecutive chunks. Inference is started between
timesteps 3 and 4. The original chunk that was execut-
ing, {at} (black), had planned to go above the obstacle
while the newly generated chunk {a′

t} (red) goes be-
low the obstacle. However, {a′

t} is not available until
d = 7 steps later. A naive asynchronous algorithm
might jump from a10 to a′

11, inducing a very high, out-
of-distribution acceleration. Temporal ensembling [68],
i.e., interpolating between chunks, reduces the acceler-
ation but produces poor actions.

Now, let ∆t be sampling period of the controller,
i.e., the duration of a controller timestep, and let
δ be the time it takes for the policy to generate an
action chunk. We say that a system is real-time
if it is guaranteed to produce a response (in our
case: at) to an event (receiving ot) within a fixed
time constraint (∆t). If δ ≤ ∆t, then meeting
the real-time constraint is trivial, since an entire
chunk can be generated between two controller
timesteps. However, this is near impossible to
achieve with modern VLAs. For example, with
an RTX 4090 GPU, the 3 billion parameter π0

VLA spends 46ms on the KV cache prefill alone,
before any denoising steps [5], and targets a 50Hz
control frequency (∆t = 20ms). Run in remote
inference for mobile manipulation, π0 lists 13ms
of network latency, in perfect conditions with
a wired connection. In a more realistic setting,
the network overhead alone could easily exceed
20ms. Kim et al. [31], who optimize the 7B
OpenVLA model [30] specifically for inference
speed, achieve no better than 321ms of latency
on a server-grade A100 GPU.

Naive synchronous inference, the default in many prior works [5, 30, 8, 24, 31, 59], simply starts
inference at the end of the execution horizon and waits while the policy generates the next chunk.
When δ > ∆t, this introduces visible pauses between chunks that not only slow down execution but
also change the dynamics of the robot, introducing distribution shift between training and evaluation.
To develop a real-time strategy, we must first introduce asynchronous inference, where inference is
started early and happens concurrently with execution.

We define d := ⌊δ/∆t⌋ and call this quantity the inference delay, corresponding to number of
controller timesteps between when ot is received and when At is available.1 Let at′|t denote the

(t′ − t)-th action of chunk At, generated from observing ot. If A0 is currently executing, and we
desire an execution horizon of s, then an asynchronous algorithm must start inference at s− d. So
long as d ≤ H − s, then this strategy will satisfy the real-time constraint and guarantee that an action
is always available when it is needed. However, since the policy cannot know what will happen
between steps s− d and s while generating As−d, the transition point between as−1|0 and as|s−d

may be arbitrarily discontinuous and out-of-distribution. Similar to a too-short execution horizon,
this strategy leads to jerky behavior that is worsened dramatically with higher delays; see Figure 2.

1For simplicity, we do not consider delays or synchronization issues at the sub-timestep level; we assume
that the environment or lower-level controller provides ot at the same instant that at−1 is consumed.

3

next inference starts

a0 a1 a2 a3a-1a-2a-3a-4a-5 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15

guidance

weight

0

1

inference delay, d
frozen, will be executed

execution horizon, s
empty, must be freshly generated

execution horizon, s
steps since last inference started

intermediate region, H ‒ d ‒ s

actions can be changed

inference starts

last chunk boundary

Figure 3: A diagram illustrating how action generation attends to the previous action chunk in real-time chunking.
If inference starts after the execution of a−1 and the inference delay is d = 4, then the newly generated chunk
will not be available until after a3 is consumed. Therefore, a0:3 are “frozen” and are attended to with a full
guidance weight of 1. In the intermediate region, a4:10, actions from the previous chunk are available but may be
updated, since inference will have finished before a4 is needed. This region is attended to with an exponentially
decreasing guidance weight. Finally, the last s = 5 actions are beyond the end of the previous chunk, and need
to be freshly generated. The execution horizon, s, is a hyperparameter constrained by d ≤ s ≤ H − d.

3 Real-Time Chunking via Inpainting

The key challenge in real-time execution is to maintain continuity between chunks. By the time a new
chunk is available, the previous one has already been executed partway, and therefore the new chunk
must be “compatible” with the previous one. At the same time, the new chunk should still incorporate
new observations, so that the policy does not lose the ability to react and make corrections.

Our key insight is to pose real-time chunking as an inpainting problem. To make the new chunk
“compatible”, we must use the overlapping timesteps where we have access to the remaining actions of
the previous chunk. The first d actions from the new chunk cannot be used, since those timesteps will
have already passed by the time the new chunk becomes available. Thus, it makes sense to “freeze”
those actions to the values that we know will be executed; our goal is then to fill in the remainder of
the new chunk in a way that is consistent with this frozen prefix (see Figure 3), much like inpainting a
section of an image that has been removed. We describe this basic inpainting principle in Sec. 3.1. In
Sec. 3.2, we introduce a soft masking extension that is critical for full cross-chunk continuity; finally,
we describe our full real-time chunking system in Sec. 3.3.

3.1 Inference-Time Inpainting with Flow Matching

Inpainting is a known strength of iterative denoising frameworks such as diffusion and flow matching.
We build on the training-free image inpainting algorithm from Pokle et al. [48], which is itself based
on pseudoinverse guidance (ΠGDM; [55]). The algorithm operates by adding a gradient-based
guidance term to the learned velocity field v at each denoising step (Equation 1) that encourages the
final generation to match some target value, Y, which is a corrupted version of the desired result.
In the case of image inpainting, the corruption operator is masking, Y is the masked image, and
the desired result is a full image consistent with Y in the non-masked areas. The ΠGDM gradient
correction, specialized to our setting, is given by

vΠGDM(Aτ
t ,ot, τ) = v(Aτ

t ,ot, τ) + min

(
β,

1− τ

τ · r2τ

)(
Y − Â1

t

)⊤

diag(W)
∂Â1

t

∂Aτ
t

(2)

where Â1
t = Aτ

t + (1− τ)v(Aτ
t ,ot, τ), (3)

r2τ =
(1− τ)2

τ2 + (1− τ)2
. (4)

Â1
t is an estimate of the final, fully denoised action chunk and W is the mask. We are abusing

notation by treating Y, At, and W as vectors of dimension HM where M is the dimension of
each action. Thus, the guidance term is a vector-Jacobian product and can be computed using

4

backpropagation. The guidance weight clipping, β, is our addition; we found that without it, the
algorithm became unstable with the small number of denoising steps commonly used in control
problems (see A.2 for an ablation).

3.2 Soft Masking for Improved Cross-Chunk Continuity

0 d = 8 41
Step

de
g

Hard masking

Soft masking

Prev. chunk

Figure 4: A comparison of naive in-
painting (hard masking) and our pro-
posed soft masking method: note
that hard masking does not match the
frozen region very well and produces
faster changes in direction.

In practice, naively inpainting using only the first d timesteps of
the previous action chunk is often insufficient to ensure that the
new chunk takes a consistent strategy, particularly when d is small
(e.g., see Figure 4). The ΠGDM correction is not perfect, and a
small d leads to a weak guidance signal, which can allow for the
new chunk to still switch strategies and cause discontinuities. Our
solution, illustrated in Figure 3, is to give our policy more cross-
chunk continuity by considering not just the first d overlapping
actions, but all H − s overlapping actions. We do this via soft
masking, setting W to real-valued weights rather than 1s and
0s. The first d actions get a weight of 1; the last s actions of the
new chunk do not overlap with the previous chunk, so they get a
weight of 0; the actions in between get weights that exponentially
decay from 1 to 0, accounting for the fact that actions further in
the future should be treated with more uncertainty. The resulting
expression for W is given by

Wi =





1 if i < d

ci
eci−1

e−1
if d ≤ i < H − s

0 if i ≥ H − s

where ci =
H − s− i

H − s− d+ 1
, i ∈ {0, . . . , H − 1}. (5)

Intuitively, W modulates the “attention” paid to each corresponding action from the previous chunk.
See Appendix A.4 for a comparison between different decay schedules.

3.3 Real-Time Chunking

We present our full real-time chunking system in Algorithm 1 (complemented by Figure 3). The
controller interfaces with our algorithm via GETACTION, which is called every ∆t to consume an
action at−1 and provide the next observation ot. The INFERENCELOOP runs in a background thread
so that an action is always available. It forecasts the next delay, d, by keeping a buffer of past
delays. The execution horizon, s, can change from chunk to chunk; the user provides a minimum
desired horizon, smin, and the actual horizon for a given chunk is max(d, smin) where d is the delay
encountered when computing the next chunk. Finally, the algorithm describes the inpainting with soft
masking procedure in GUIDEDINFERENCE, which explicitly defines a denoising function (Eq. 3) and
computes a vector-Jacobian product, which can be done with reverse-mode autodifferentiation [2].

Algorithm 1 Real-Time Chunking

Require: flow policy π with prediction horizon H , minimum execution horizon smin, mutex M,
condition variable C associated with M, initial chunk Ainit, initial delay estimate dinit, delay
buffer size b, number of denoising steps n, maximum guidance weight β

1: procedure INITIALIZESHAREDSTATE ▷ Initialize mutex-protected shared variables
2: t = 0; Acur = Ainit, ocur = null

3: function GETACTION(onext) ▷ Called at an interval of ∆t by controller
4: with M acquired do
5: t = t+ 1
6: ocur = onext

7: notify C
8: return Acur[t− 1]

5

9: procedure INFERENCELOOP ▷ Run inference in a looping background thread
10: acquire M
11: Q = new Queue([dinit], maxlen=b) ▷ Holds a limited buffer of past inference delays
12: loop
13: wait on C until t ≥ smin

14: s = t ▷ s is the number of actions executed since last inference started
15: Aprev = Acur[s, s+ 1, . . . , H − 1] ▷ Remove the s actions that have already been

executed
16: o = ocur

17: d = max(Q) ▷ Estimate the next inference delay conservatively
18: with M released do
19: Anew = GUIDEDINFERENCE(π,o,Aprev, d, s)

20: Acur = Anew ▷ Swap to the new chunk as soon as it is available
21: t = t− s ▷ Reset t so that it indexes into Anew

22: enqueue t onto Q ▷ Record the observed delay

23: function GUIDEDINFERENCE(π,o,Aprev, d, s)

24: compute W using Eq. 5; right-pad Aprev to length H; initialize A0 ∼ N (0, I)
25: for τ = 0 to 1 with step size 1/n do
26: f

Â1
= A′ 7→ A′ + (1− τ)vπ(A

′,o, τ) ▷ Define denoising function (Eq. 3)

27: e =
(
Aprev − f

Â1
(Aτ)

)⊤
diag(W) ▷ Weighted error term from Eq. 2

28: g = e ·
∂f̂

A1

∂A′

∣∣∣
A′=Aτ

▷ Compute vector-Jacobian product from Eq. 2 via autodiff

29: Aτ+ 1

n = Aτ + 1

n

(
vπ(A

τ ,o, τ) + min
(
β, 1−τ

τ ·r2
τ

)
g
)

▷ Integration step (Eq. 1)

return A1

4 Experiments

In our experiments, we aim to answer the following questions. First, how does RTC compare to
existing methods in highly dynamic and stochastic environments, and under increasing inference
delays? Second, how important is soft masking (Sec. 3.2) to RTC? Third, how does RTC affect the
performance and speed of real-world dexterous robots?

We first evaluate RTC using a benchmark of 12 highly dynamic and stochastic environments in the
Kinetix [43] simulator. We use this benchmark to compare the performance of RTC to other methods
under simulated inference delays, as well as investigate the effect of soft masking. Then, using the
π0.5 VLA [24] as the base model, we evaluate the performance and speed of RTC on 6 challenging
bimanual dexterous manipulation tasks, including 2 mobile manipulation tasks.

4.1 Simulated Benchmark

Most simulated imitation learning benchmarks are quasi-static, and standard chunked execution
with a long enough execution horizon can achieve near-perfect success rates [11]. We instead create
a benchmark of 12 dynamic tasks in Kinetix [43], which uses force-based control, so inference
delay necessitates asynchronous execution (there is no concept of “holding position”). We select 10
existing environments and create 2 new ones such that all environments involve dynamic motions
like throwing, catching, and balancing. To simulate imperfect actuation, we add Gaussian noise to
the actions, making closed-loop corrections crucial for success.

Setup. To generate data for imitation learning, we first train expert policies using RPO [50] and a
binary success reward. For each environment, we train 6 expert policies with different seeds and
then generate a 1M transition dataset with a different policy selected each episode. We then train
action chunking flow policies with a prediction horizon of H = 8 and a 4-layer MLP-Mixer [61]
architecture for 32 epochs. We report binary success rates with 2048 rollouts per data point, and
simulate delays between 0 (fully closed-loop) and 4 (the maximum supported when H = 8).

6

1 2 3 4 5 6 7
Execution Horizon, s

0.750

0.775

0.800

0.825

0.850

0.875

0.900

So
lv

e
R

at
e

Average Over Environments (Fixed d = 1)

0 1 2 3 4
Inference Delay, d

0.5

0.6

0.7

0.8

0.9

So
lv

e
R

at
e

Average Over Environments

RTC (ours)
RTC (hard masking)
BID (Liu et. al.)
Naive async
TE (Zhao et. al.)

car_launch cartpole_thrust catapult catcher_v3

chain_lander grasp_easy h17_unicycle hard_lunar_lander

mjc_half_cheetah mjc_swimmer

mjc_walker trampoline

Figure 5: Top left: Kinetix environments; each involves getting a green object on the left to touch a blue one on
the right. Bottom left: Execution horizon vs. solve rate with a fixed inference delay of 1. Only RTC and BID
take full advantage of faster updates, showing strictly increasing performance with decreasing execution horizon.
Right: Inference delay vs. solve rate with a fixed execution horizon of s = max(d, 1). RTC outperforms all
baselines. Furthermore, soft masking (Sec. 3.2) improves performance at lower inference delays and execution
horizons. Each data point represents 2048 trials, and 95% Wilson score intervals are shaded in.

Baselines. We compare against the following baselines:

• Naive async. This strategy does not pay attention to the previous action chunk at all when
generating a new one, naively switching chunks as soon as the new one is ready.

• Bidirectional decoding (BID; [39]). This strategy uses rejection sampling to keep continuity
across chunks. We use a batch size of N = 32, mode size of K = 3, and a checkpoint trained for
8 epochs as the weak policy.

• Temporal ensembling (TE; [68]). This strategy involves keeping a buffer of predicted action
chunks and executing an average of all actions predicted for a particular timestep.

Results. Figure 5 shows the simulated results. In the delay plots (right): TE performs poorly across
the board, even with an inference delay of d = 0, illustrating the multi-modality of our benchmark—
averages of valid actions are not necessarily valid. RTC shows the most robustness to inference
delays, outperforming BID, and the gap widens with increasing delay; note that BID uses significantly
more compute than RTC by sampling batches of 64 action chunks, 32 from a strong model and 32
from a weak model. Additionally, we find that hard masking somewhat underperforms soft masking,
particularly when d is smaller, supporting our claims in Sec. 3.2. Finally, in the execution horizon
plot (left), we find that thanks to its continuity across chunks, RTC is better able to take advantage of
closed-loop corrections, always performing better with a decreasing execution horizon.

4.2 Real-World Results

Next, we deploy our full real-time chunking system to the real world. We use the π0.5VLA [24] as our
base policy, and evaluate RTC on a bimanual system with two 6-DoF arms and parallel jaw grippers.
Unlike our simulated benchmark, the robots use position control, and so synchronous inference—
stopping between chunks—is a reasonable default strategy, used in many prior works [5, 24, 31, 47].
Our goal is to improve upon synchronous inference in a combination of both performance and speed.

Setup. We use π0.5 (H = 50, ∆t = 20ms) with n = 5 denoising steps, giving a model latency of
76ms for the baselines and 97ms for RTC. We use remote inference over LAN, which adds 10-20ms
of latency, giving a starting inference delay around d ≈ 6 for RTC. However, we would like to
understand how the system behaves with higher inference latencies, simulating, e.g., scaling up the
model size or running inference on a distant cloud server. Thus, we also evaluate all methods with
+100ms and +200ms of injected latency, corresponding to d ≈ 11 and d ≈ 16, respectively.

Tasks and scoring. Each episode gets an integer score corresponding to how many substeps of the
task it completed successfully. We evaluate the following tasks:

7

• Light candle (5 steps, 40s cutoff). Pick up a match and matchbox, strike the match, use it to light
a candle, and drop it in a bowl.

• Plug ethernet (6 steps, 120s cutoff). Pick up the end of an ethernet cable, reorient it, plug it into a
server rack, and repeat the process for the other end.

• Make bed, mobile (3 steps, 200s cutoff). Move the corner of a blanket and 2 pillows from the foot
to the head of a bed.

• Shirt folding (1 step, 300s cutoff). Fold a shirt from a flattened position.
• Batch folding (4 steps, 300s cutoff). Take a varied, crumpled clothing item out of a bin, flatten it,

fold it, then place it neatly on a pile.
• Dishes in sink, mobile (8 steps, 300s cutoff). Move 4 varied items from a counter into a sink.

See the accompanying blog post for videos of each task. We evaluate each task and method for 10
trials for a total of 480 episodes, adding up to 28 hours of pure robot execution time. We also post-hoc
annotate the score for each episode and the timestamp at which each step is achieved.

Baselines. We compare to the following baselines:

• Synchronous. This corresponds to the default inference strategy in prior work [5, 24, 31, 47],
which executes s = 25 actions and then pauses while the new chunk is generated.

• TE, sparse. This is similar to naive async in our simulated results; it executes s = 25 actions at
a time while computing the next chunk in parallel. We found it significantly reduced jerkiness
to also apply TE, even though only the first H − s − 2d executed steps of each chunk have
overlapping actions to ensemble.

• TE, dense. This strategy is the closest to the original TE in Zhao et al. [68]. We run inference as
often as possible, resulting in s = d for every chunk. This results in there always being at least 2
overlapping action chunks to ensemble, and often more.

We do not compare to BID [39] in the real world, as we found in simulation that it underperforms
RTC while using significantly more compute—when applied to π0.5with a batch size of 16, BID has
2.3 times the latency of our method (see A.3 for latency measurements).

0 5k 10k 15k
0.00

0.25

0.50

0.75

1.00

Cu
m

ul
at

iv
e

pr
og

re
ss

batch_folding

0 5k 10k

bed_making

0 5k 10k 15k

dishes_in_sink

0 1k 2k

light_candle

0 2k 4k 6k

plug_ethernet

0 5k 10k 15k

shirt_folding

Controller steps

101 102

Time (s)

0.0

0.2

0.4

0.6

0.8

Cu
m

ul
at

iv
e

pr
og

re
ss

+0ms +100ms +200ms
Injected Delay

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

 th
ro

ug
hp

ut
 (

ta
sk

s/
m

in
)

Method
RTC (ours)
Synchronous

TE (Zhao et. al.), sparse
TE (Zhao et. al.), dense

Delay
+0ms
+100ms
+200ms

Figure 6: Top: Controller steps (equivalent to elapsed time with inference pauses removed multiplied by 50Hz)
vs. cumulative progress for each task, aggregated across all delays. Progress is measured in discrete steps
corresponding to the subsections of each task. Left: Time (including inference pauses) vs. cumulative progress
aggregated across all tasks. The x-axis is log scale to better show progress during both short and long-horizon
tasks. Right: Inference delay vs. average throughput, defined as the proportion of task completed divided by
duration of episode averaged over episodes. Error bars are ±1 SEM. Average throughput gives a balanced view
of both speed and performance for each method. Neither TE variant can run at +100 or +200ms of injected
latency, causing such high oscillations that the robot’s protective stop is triggered.

Results. We present the results in Figure 6. In average task throughput, a measurement of both speed
and performance, RTC achieves the best score at all inference delays with a statistically significant
result at +100 and +200ms. RTC is completely robust to injected delay, showing no degradation,

8

whereas synchronous degrades linearly and both TE variants do not run at all due to causing such high
oscillations that the robot’s protective stop is triggered (see videos). Inspecting the per-task results
(Figure 5, top), we can conclude that RTC helps with more than just execution speed: it completes
tasks faster than synchronous inference even when inference pauses are removed. All tasks, except
for light candle, allow for retrying until the time limit (and π0.5 does, in general, exhibit robust
retrying behavior). Even though synchronous inference often reaches a similar final score, RTC often
completes more of the task earlier in the episode, reflecting fewer mistakes and less retrying. In light
candle, the most precision-sensitive task—and also the only one without retrying—RTC shows a
large advantage in final score, reflecting a higher overall success rate. Interestingly, the same is true in
bed making, even though that task does elicit retrying. The policy particularly struggles to manipulate
the pillows, and bed making is the hardest task overall, which may be why RTC has a strong effect.

5 Related Work

Action chunking, VLAs, and cascade control. Inspired in part by human motor control [33], action
chunking has recently emerged as the de facto standard in imitation learning for visuomotor control
[68, 11]. Learning to generate action chunks from human data requires expressive statistical models,
such as variational inference [68, 19], diffusion [11, 12, 69, 68, 46, 59], flow matching [5, 6], vector
quantization [34, 3, 44], or byte-pair encoding [47]. Recently, some of these methods have been
scaled to billions of parameters, giving rise to VLAs [7, 13, 30, 5, 71, 10, 9, 70, 24, 47, 37], a class
of large models built on pre-trained vision-language model backbones. With the capacity to fit ever-
growing robot datasets [13, 29, 62, 15, 41, 27], as well as Internet knowledge from vision-language
pre-training, VLAs have achieved impressive results in generalizable robot manipulation. When
applied to real-world robots, action chunking policies are often used in conjunction with a lower-level,
higher-frequency control loop—such as a PID controller—which translates the outputs of the policy
(e.g., joint positions) to hardware-specific control signals (e.g., joint torques). In these cases, action
chunking policies can be viewed as a form of cascade control [14], with the learned policy acting the
outermost control loop. However, this is not always the case: for example, our simulated experiments
use learned policies that output torques and forces directly. As such, we defer any exploration of the
intersection between cascade control theory and learned action chunking policies to future work.

Reducing inference latency. A natural approach to improve the real-time capabilities of a model is to
simply speed it up. For instance, consistency policy [49] distills diffusion policies to elide expensive
iterative denoising. Streaming diffusion policy [23] proposes an alternative training recipe that allows
for very few denoising steps per controller timestep. Kim et al. [31] augment OpenVLA [30] with
parallel decoding to elide expensive autoregressive decoding. More broadly, there is a rich literature
on optimizing inference speed, both for diffusion models [52, 38, 56, 17] and large transformers in
general [32, 25, 35]. Unfortunately, these directions cannot reduce inference cost below one forward
pass. So long as this forward pass takes longer than the controller’s sampling period, other methods
will be needed for real-time execution.

Inpainting and guidance. There is a rich literature on image inpainting with pre-trained diffusion
and flow models [48, 55, 40, 42]. In our work, we incorporate one such method [48] into our
novel real-time execution framework with modifications (namely, soft masking and guidance weight
clipping) that we find necessary for our setting. For sequential decision-making, Diffuser [26]
pioneered diffusion-based inpainting for following state and action constraints in long-term planning,
though their inpainting method is not guidance-based. (See Appendix A.4 for a comparison to the
inpainting method from Diffuser applied to our setting.) Diffuser and other work [64, 1] have also
guided diffusion models with value functions to solve reinforcement learning (RL) problems. Our
work is distinct in that it is the first to apply either inpainting or guidance to real-time control.

Real-time execution. Real-time control has been studied long before the advent of VLAs. Similar
to action chunking, model predictive control (MPC; [51]) generates plans over a receding time
horizon; like our method, it parallelizes execution and computation, and uses the prior chunk to
warm-start planning for the next. Though recent works combining learning methods with MPC
have demonstrated real-time control capabilities in narrow domains [53, 21], they rely on explicit,
hand-crafted dynamics models and cost functions. These methods are not applicable to our setting,
which considers model-free imitation learning policies and tests them on unstructured, open-world
manipulation tasks. Separately, in reinforcement learning, a variety of prior works have developed
time-delayed decision-making methods [57, 16, 54, 63, 66, 67]. However, these approaches are not

9

always applicable to imitation learning, and none of them leverage action chunking. Most recently,
hierarchical VLA designs [58, 4] have emerged where the model is split into a System 2 (high-level
planning) and System 1 (low-level action generation) component. The System 2 component contains
the bulk of the VLA’s capacity and runs at a low frequency, while the System 1 component is
lightweight and fast. This approach is orthogonal to ours, and comes with its own tradeoffs (e.g.,
limiting the size of the System 1 component and requiring its own training recipe).

Bidirectional Decoding. The most closely related prior work is Bidirectional Decoding (BID;
[39]), which enables fully closed-loop control with pre-trained action chunking policies via rejection
sampling. While Liu et al. [39] do not consider inference delay, the BID algorithm can be used to
accomplish the same effect as our guidance-based inpainting. We compare to BID in our simulated
benchmark, finding that it underperforms RTC while using significantly more compute.

6 Discussion and Future Work

Real-time chunking is an inference-time algorithm for asynchronous execution of action chunking
policies that demonstrates speed and performance across simulation and real-world experiments,
including under significant inference delays. However, this work is not without limitations: it adds
significant computational overhead compared to methods that sample directly from the base policy,
and it is applicable only to diffusion- and flow-based policies. Additionally, while our real-world
experiments cover a variety of challenging manipulation tasks, there are more dynamic settings that
could benefit even more from real-time execution. One example is legged locomotion, which is
represented in our simulated benchmark but not our real-world results.

7 Acknowledgements

We thank Charles Xu and Kay Ke for designing the Ethernet plug-in task. We thank Brian Ichter for
suggesting the cumulative progress plots and for later feedback on figures. We thank Dibya Ghosh for
suggesting the throughput metric to measure a combination of speed and performance. We thank Ury
Zhilinsky, Karan Dhabalia, Haohuan Wang, and Dibya Ghosh for help with training infrastructure;
Noah Brown, Szymon Jakubczak, Adnan Esmail, Tim Jones, Mohith Mothukuri, James Darpinian,
and James Tanner for robot infrastructure; Adrian Li-Bell for evaluation infrastructure; Anna Walling,
Chelsea Finn, and Karol Hausman for robot, data and evaluation operations; and Michael Equi, Quan
Vuong, and Jost Tobias Springenberg for training some of the π0.5 policies used in the real-world
experiments. We also thank Claudio Guglieri and Alex Krasikov for their help with visualizations
for the blog post, and Jessica Dai for helpful copy editing of the paper manuscript. Finally, we are
grateful to the whole team of robot operators at Physical Intelligence for their enormous contributions
to running data collection and policy evaluations.

References

[1] Anurag Ajay, Yilun Du, Abhi Gupta, Joshua Tenenbaum, Tommi Jaakkola, and Pulkit
Agrawal. Is conditional generative modeling all you need for decision-making? arXiv preprint
arXiv:2211.15657, 2022.

[2] Atilim Gunes Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark
Siskind. Automatic differentiation in machine learning: a survey. Journal of machine learning
research, 18(153):1–43, 2018.

[3] Suneel Belkhale and Dorsa Sadigh. Minivla: A better vla with a smaller footprint, 2024. URL
https://github.com/Stanford-ILIAD/openvla-mini.

[4] Johan Bjorck, Fernando Castañeda, Nikita Cherniadev, Xingye Da, Runyu Ding, Linxi Fan,
Yu Fang, Dieter Fox, Fengyuan Hu, Spencer Huang, et al. Gr00t n1: An open foundation model
for generalist humanoid robots. arXiv preprint arXiv:2503.14734, 2025.

[5] Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo
Fusai, Lachy Groom, Karol Hausman, Brian Ichter, et al. π0: A vision-language-action flow
model for general robot control. arXiv preprint arXiv:2410.24164, 2024.

10

https://github.com/Stanford-ILIAD/openvla-mini

[6] Max Braun, Noémie Jaquier, Leonel Rozo, and Tamim Asfour. Riemannian flow matching
policy for robot motion learning. In 2024 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 5144–5151. IEEE, 2024.

[7] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choro-
manski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, Pete Florence, Chuyuan
Fu, Montse Gonzalez Arenas, Keerthana Gopalakrishnan, Kehang Han, Karol Hausman, Alex
Herzog, Jasmine Hsu, Brian Ichter, Alex Irpan, Nikhil Joshi, Ryan Julian, Dmitry Kalashnikov,
Yuheng Kuang, Isabel Leal, Lisa Lee, Tsang-Wei Edward Lee, Sergey Levine, Yao Lu, Henryk
Michalewski, Igor Mordatch, Karl Pertsch, Kanishka Rao, Krista Reymann, Michael Ryoo,
Grecia Salazar, Pannag Sanketi, Pierre Sermanet, Jaspiar Singh, Anikait Singh, Radu Soricut,
Huong Tran, Vincent Vanhoucke, Quan Vuong, Ayzaan Wahid, Stefan Welker, Paul Wohlhart,
Jialin Wu, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yu, and Brianna Zitkovich. Rt-2:
Vision-language-action models transfer web knowledge to robotic control. In arXiv preprint
arXiv:2307.15818, 2023.

[8] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choro-
manski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, et al. Rt-2: Vision-language-
action models transfer web knowledge to robotic control. arXiv preprint arXiv:2307.15818,
2023.

[9] Chi-Lam Cheang, Guangzeng Chen, Ya Jing, Tao Kong, Hang Li, Yifeng Li, Yuxiao Liu,
Hongtao Wu, Jiafeng Xu, Yichu Yang, Hanbo Zhang, and Minzhao Zhu. Gr-2: A generative
video-language-action model with web-scale knowledge for robot manipulation. arXiv preprint
arXiv:2410.06158, 2024.

[10] An-Chieh Cheng, Yandong Ji, Zhaojing Yang, Xueyan Zou, Jan Kautz, Erdem Biyik, Hongxu
Yin, Sifei Liu, and Xiaolong Wang. NaVILA: Legged Robot Vision-Language-Action Model
for Navigation. arXiv preprint arXiv:2412.04453, 2024.

[11] Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ
Tedrake, and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion.
The International Journal of Robotics Research, page 02783649241273668, 2023.

[12] Cheng Chi, Zhenjia Xu, Chuer Pan, Eric Cousineau, Benjamin Burchfiel, Siyuan Feng, Russ
Tedrake, and Shuran Song. Universal manipulation interface: In-the-wild robot teaching without
in-the-wild robots. arXiv preprint arXiv:2402.10329, 2024.

[13] OX-Embodiment Collaboration, A Padalkar, A Pooley, A Jain, A Bewley, A Herzog, A Irpan,
A Khazatsky, A Rai, A Singh, et al. Open X-Embodiment: Robotic learning datasets and RT-X
models. arXiv preprint arXiv:2310.08864, 1(2), 2023.

[14] Donald R. Coughanowr and Steven E. LeBlanc. Process Systems Analysis and Control, chap-
ter 18. McGraw-Hill, New York, 3rd edition, 2009. ISBN 978-0073397894.

[15] Hao-Shu Fang, Hongjie Fang, Zhenyu Tang, Jirong Liu, Chenxi Wang, Junbo Wang, Haoyi Zhu,
and Cewu Lu. Rh20t: A comprehensive robotic dataset for learning diverse skills in one-shot.
In 2024 IEEE International Conference on Robotics and Automation (ICRA), pages 653–660.
IEEE, 2024.

[16] Vlad Firoiu, Tina Ju, and Josh Tenenbaum. At human speed: Deep reinforcement learning with
action delay. arXiv preprint arXiv:1810.07286, 2018.

[17] Kevin Frans, Danijar Hafner, Sergey Levine, and Pieter Abbeel. One step diffusion via shortcut
models. arXiv preprint arXiv:2410.12557, 2024.

[18] Ruiqi Gao, Emiel Hoogeboom, Jonathan Heek, Valentin De Bortoli, Kevin P. Murphy, and
Tim Salimans. Diffusion meets flow matching: Two sides of the same coin. 2024. URL
https://diffusionflow.github.io/.

[19] Abraham George and Amir Barati Farimani. One act play: Single demonstration behavior
cloning with action chunking transformers. arXiv preprint arXiv:2309.10175, 2023.

11

https://diffusionflow.github.io/

[20] Anthony Ha. Google’s gemini has beaten pokémon blue
(with a little help). https://techcrunch.com/2025/05/03/
googles-gemini-has-beaten-pokemon-blue-with-a-little-help/, May 2025.
Accessed May 8, 2025.

[21] Nicklas Hansen, Xiaolong Wang, and Hao Su. Temporal difference learning for model predictive
control, 2022. URL https://arxiv.org/abs/2203.04955.

[22] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in neural information processing systems, 33:6840–6851, 2020.

[23] Sigmund H Høeg, Yilun Du, and Olav Egeland. Streaming diffusion policy: Fast policy
synthesis with variable noise diffusion models. arXiv preprint arXiv:2406.04806, 2024.

[24] Physical Intelligence, Kevin Black, Noah Brown, James Darpinian, Karan Dhabalia, Danny
Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo Fusai, et al. π0.5: A vision-
language-action model with open-world generalization. arXiv preprint arXiv:2504.16054,
2025.

[25] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard,
Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for
efficient integer-arithmetic-only inference. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2704–2713, 2018.

[26] Michael Janner, Yilun Du, Joshua B Tenenbaum, and Sergey Levine. Planning with diffusion
for flexible behavior synthesis. arXiv preprint arXiv:2205.09991, 2022.

[27] Zhenyu Jiang, Yuqi Xie, Kevin Lin, Zhenjia Xu, Weikang Wan, Ajay Mandlekar, Linxi Fan,
and Yuke Zhu. Dexmimicgen: Automated data generation for bimanual dexterous manipulation
via imitation learning. arXiv preprint arXiv:2410.24185, 2024.

[28] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

[29] Alexander Khazatsky, Karl Pertsch, Suraj Nair, Ashwin Balakrishna, Sudeep Dasari, Siddharth
Karamcheti, Soroush Nasiriany, Mohan Kumar Srirama, Lawrence Yunliang Chen, Kirsty Ellis,
Peter David Fagan, Joey Hejna, Masha Itkina, Marion Lepert, Yecheng Jason Ma, Patrick Tree
Miller, Jimmy Wu, Suneel Belkhale, Shivin Dass, Huy Ha, Arhan Jain, Abraham Lee, Young-
woon Lee, Marius Memmel, Sungjae Park, Ilija Radosavovic, Kaiyuan Wang, Albert Zhan,
Kevin Black, Cheng Chi, Kyle Beltran Hatch, Shan Lin, Jingpei Lu, Jean Mercat, Abdul
Rehman, Pannag R Sanketi, Archit Sharma, Cody Simpson, Quan Vuong, Homer Rich Walke,
Blake Wulfe, Ted Xiao, Jonathan Heewon Yang, Arefeh Yavary, Tony Z. Zhao, Christopher
Agia, Rohan Baijal, Mateo Guaman Castro, Daphne Chen, Qiuyu Chen, Trinity Chung, Jaimyn
Drake, Ethan Paul Foster, Jensen Gao, David Antonio Herrera, Minho Heo, Kyle Hsu, Jiaheng
Hu, Donovon Jackson, Charlotte Le, Yunshuang Li, Kevin Lin, Roy Lin, Zehan Ma, Abhiram
Maddukuri, Suvir Mirchandani, Daniel Morton, Tony Nguyen, Abigail O’Neill, Rosario Scalise,
Derick Seale, Victor Son, Stephen Tian, Emi Tran, Andrew E. Wang, Yilin Wu, Annie Xie,
Jingyun Yang, Patrick Yin, Yunchu Zhang, Osbert Bastani, Glen Berseth, Jeannette Bohg,
Ken Goldberg, Abhinav Gupta, Abhishek Gupta, Dinesh Jayaraman, Joseph J Lim, Jitendra
Malik, Roberto Martín-Martín, Subramanian Ramamoorthy, Dorsa Sadigh, Shuran Song, Jiajun
Wu, Michael C. Yip, Yuke Zhu, Thomas Kollar, Sergey Levine, and Chelsea Finn. Droid: A
large-scale in-the-wild robot manipulation dataset. In Proceedings of Robotics: Science and
Systems, 2024.

[30] Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source
vision-language-action model. arXiv preprint arXiv:2406.09246, 2024.

[31] Moo Jin Kim, Chelsea Finn, and Percy Liang. Fine-tuning vision-language-action models:
Optimizing speed and success. arXiv preprint arXiv:2502.19645, 2025.

12

https://techcrunch.com/2025/05/03/googles-gemini-has-beaten-pokemon-blue-with-a-little-help/
https://techcrunch.com/2025/05/03/googles-gemini-has-beaten-pokemon-blue-with-a-little-help/
https://arxiv.org/abs/2203.04955

[32] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems
Principles, pages 611–626, 2023.

[33] Lucy Lai, Ann Zixiang Huang, and Samuel J Gershman. Action chunking as policy compression.
2022.

[34] Seungjae Lee, Yibin Wang, Haritheja Etukuru, H Jin Kim, Nur Muhammad Mahi Shafiullah,
and Lerrel Pinto. Behavior generation with latent actions. arXiv preprint arXiv:2403.03181,
2024.

[35] Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization
for on-device llm compression and acceleration. Proceedings of Machine Learning and Systems,
6:87–100, 2024.

[36] Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow
matching for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

[37] Songming Liu, Lingxuan Wu, Bangguo Li, Hengkai Tan, Huayu Chen, Zhengyi Wang, Ke Xu,
Hang Su, and Jun Zhu. Rdt-1b: a diffusion foundation model for bimanual manipulation. arXiv
preprint arXiv:2410.07864, 2024.

[38] Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate
and transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022.

[39] Yuejiang Liu, Jubayer Ibn Hamid, Annie Xie, Yoonho Lee, Maximilian Du, and Chelsea Finn.
Bidirectional decoding: Improving action chunking via closed-loop resampling. arXiv preprint
arXiv:2408.17355, 2024.

[40] Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, and Luc
Van Gool. Repaint: Inpainting using denoising diffusion probabilistic models. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pages 11461–11471,
2022.

[41] Ajay Mandlekar, Yuke Zhu, Animesh Garg, Jonathan Booher, Max Spero, Albert Tung, Julian
Gao, John Emmons, Anchit Gupta, Emre Orbay, et al. Roboturk: A crowdsourcing platform
for robotic skill learning through imitation. In Conference on Robot Learning, pages 879–893.
PMLR, 2018.

[42] Morteza Mardani, Jiaming Song, Jan Kautz, and Arash Vahdat. A variational perspective on
solving inverse problems with diffusion models. arXiv preprint arXiv:2305.04391, 2023.

[43] Michael Matthews, Michael Beukman, Chris Lu, and Jakob Foerster. Kinetix: Investigating
the training of general agents through open-ended physics-based control tasks. arXiv preprint
arXiv:2410.23208, 2024.

[44] Atharva Mete, Haotian Xue, Albert Wilcox, Yongxin Chen, and Animesh Garg. Quest: Self-
supervised skill abstractions for learning continuous control, 2024. URL https://arxiv.
org/abs/2407.15840.

[45] OpenAI. Introducing openai codex, August 2021. URL https://openai.com/index/
introducing-codex/. Accessed on May 27, 2025.

[46] Tim Pearce, Tabish Rashid, Anssi Kanervisto, Dave Bignell, Mingfei Sun, Raluca Georgescu,
Sergio Valcarcel Macua, Shan Zheng Tan, Ida Momennejad, Katja Hofmann, et al. Imitating
human behaviour with diffusion models. arXiv preprint arXiv:2301.10677, 2023.

[47] Karl Pertsch, Kyle Stachowicz, Brian Ichter, Danny Driess, Suraj Nair, Quan Vuong, Oier Mees,
Chelsea Finn, and Sergey Levine. Fast: Efficient action tokenization for vision-language-action
models. arXiv preprint arXiv:2501.09747, 2025.

13

https://arxiv.org/abs/2407.15840
https://arxiv.org/abs/2407.15840
https://openai.com/index/introducing-codex/
https://openai.com/index/introducing-codex/

[48] Ashwini Pokle, Matthew J Muckley, Ricky TQ Chen, and Brian Karrer. Training-free linear
image inverses via flows. arXiv preprint arXiv:2310.04432, 2023.

[49] Aaditya Prasad, Kevin Lin, Jimmy Wu, Linqi Zhou, and Jeannette Bohg. Consistency policy:
Accelerated visuomotor policies via consistency distillation. arXiv preprint arXiv:2405.07503,
2024.

[50] Md Masudur Rahman and Yexiang Xue. Robust policy optimization in deep reinforcement
learning. arXiv preprint arXiv:2212.07536, 2022.

[51] J.B. Rawlings, D.Q. Mayne, and M. Diehl. Model Predictive Control: Theory, Computation, and
Design. Nob Hill Publishing, 2017. ISBN 9780975937730. URL https://books.google.
ch/books?id=MrJctAEACAAJ.

[52] Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models.
arXiv preprint arXiv:2202.00512, 2022.

[53] Tim Salzmann, Elia Kaufmann, Jon Arrizabalaga, Marco Pavone, Davide Scaramuzza, and
Markus Ryll. Real-time neural mpc: Deep learning model predictive control for quadrotors and
agile robotic platforms. IEEE Robotics and Automation Letters, 8(4):2397–2404, 2023.

[54] Erik Schuitema, Lucian Buşoniu, Robert Babuška, and Pieter Jonker. Control delay in rein-
forcement learning for real-time dynamic systems: A memoryless approach. In 2010 IEEE/RSJ
international conference on intelligent robots and systems, pages 3226–3231. IEEE, 2010.

[55] Jiaming Song, Arash Vahdat, Morteza Mardani, and Jan Kautz. Pseudoinverse-guided diffusion
models for inverse problems. In International Conference on Learning Representations, 2023.

[56] Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. 2023.

[57] Jie Tan, Tingnan Zhang, Erwin Coumans, Atil Iscen, Yunfei Bai, Danijar Hafner, Steven Bohez,
and Vincent Vanhoucke. Sim-to-real: Learning agile locomotion for quadruped robots. arXiv
preprint arXiv:1804.10332, 2018.

[58] Gemini Robotics Team, Saminda Abeyruwan, Joshua Ainslie, Jean-Baptiste Alayrac, Montser-
rat Gonzalez Arenas, Travis Armstrong, Ashwin Balakrishna, Robert Baruch, Maria Bauza,
Michiel Blokzijl, et al. Gemini robotics: Bringing ai into the physical world. arXiv preprint
arXiv:2503.20020, 2025.

[59] Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep
Dasari, Joey Hejna, Tobias Kreiman, Charles Xu, et al. Octo: An open-source generalist robot
policy. arXiv preprint arXiv:2405.12213, 2024.

[60] Waywe Research Team et al. Lingo-2: Driving with natural language, 2024.

[61] Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas
Unterthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al. Mlp-mixer:
An all-mlp architecture for vision. Advances in neural information processing systems, 34:
24261–24272, 2021.

[62] Homer Rich Walke, Kevin Black, Tony Z Zhao, Quan Vuong, Chongyi Zheng, Philippe Hansen-
Estruch, Andre Wang He, Vivek Myers, Moo Jin Kim, Max Du, et al. BridgeData v2: A dataset
for robot learning at scale. In Conference on Robot Learning, pages 1723–1736. PMLR, 2023.

[63] Thomas J Walsh, Ali Nouri, Lihong Li, and Michael L Littman. Planning and learning in
environments with delayed feedback. In Machine Learning: ECML 2007: 18th European
Conference on Machine Learning, Warsaw, Poland, September 17-21, 2007. Proceedings 18,
pages 442–453. Springer, 2007.

[64] Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive
policy class for offline reinforcement learning. arXiv preprint arXiv:2208.06193, 2022.

[65] Jason Wei, Zhiqing Sun, Spencer Papay, Scott McKinney, Jeffrey Han, Isa Fulford, Hyung Won
Chung, Alex Tachard Passos, William Fedus, and Amelia Glaese. Browsecomp: A simple yet
challenging benchmark for browsing agents. arXiv preprint arXiv:2504.12516, 2025.

14

https://books.google.ch/books?id=MrJctAEACAAJ
https://books.google.ch/books?id=MrJctAEACAAJ

[66] Ted Xiao, Eric Jang, Dmitry Kalashnikov, Sergey Levine, Julian Ibarz, Karol Hausman, and
Alexander Herzog. Thinking while moving: Deep reinforcement learning with concurrent
control. arXiv preprint arXiv:2004.06089, 2020.

[67] Bin Xu, Farzam Malmir, Dhruvang Rathod, and Zoran Filipi. Real-time reinforcement learning
optimized energy management for a 48v mild hybrid electric vehicle. Technical report, SAE
Technical Paper, 2019.

[68] Tony Z Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. Learning fine-grained bimanual
manipulation with low-cost hardware. arXiv preprint arXiv:2304.13705, 2023.

[69] Tony Z Zhao, Jonathan Tompson, Danny Driess, Pete Florence, Kamyar Ghasemipour, Chelsea
Finn, and Ayzaan Wahid. Aloha unleashed: A simple recipe for robot dexterity. arXiv preprint
arXiv:2410.13126, 2024.

[70] Haoyu Zhen, Xiaowen Qiu, Peihao Chen, Jincheng Yang, Xin Yan, Yilun Du, Yining Hong,
and Chuang Gan. 3d-vla: 3d vision-language-action generative world model. arXiv preprint
arXiv:2403.09631, 2024.

[71] Ruijie Zheng, Yongyuan Liang, Shuaiyi Huang, Jianfeng Gao, Hal Daumé III, Andrey Kolobov,
Furong Huang, and Jianwei Yang. Tracevla: Visual trace prompting enhances spatial-temporal
awareness for generalist robotic policies. arXiv preprint arXiv:2412.10345, 2024.

15

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Yes, the abstract and introduction accurately reflect our contributions. The
abstract claims that we present a method for asynchronous execution of action chunking
policies that improves speed and performance, which is demonstrated through extensive
experiments in both simulation and real-world settings. The introduction expands on these
claims while clearly stating limitations, such as the method only being applicable to diffusion
and flow-based policies. All claims are supported by our experimental results.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations of the work are discussed in Sec. 6, which include the scope
(diffusion- and flow-based policies only), computational efficiency, and shortcomings of the
experiments.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.

• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

16

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.

• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides a detailed algorithm in Algorithm 1 that can be used to
reproduce the experimental results on real robots using any pre-trained flow-based policy.
The full code to reproduce the simulated benchmark and its results are provided in the
supplemental material.

Guidelines:

• The answer NA means that the paper does not include experiments.

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

17

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes] and [No]

Justification: The full code and instructions to reproduce the simulated benchmark and its
results are provided in the supplemental material. The data used to train π0.5, as well as the
real robot runtime code, are not released as these are proprietary.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All training and testing hyperparameters are provided in the supplemental
material.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Error bars are reported, and described, everywhere in the experiments section
where a mean of multiple data points is reported.

18

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Guidelines:

• The answer NA means that the paper does not include experiments.

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provides compute details in the supplemental material.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors have reviewed the NeurIPS Code of Ethics. This work aims
primarily to advance the state of the art in end-to-end robot learning. While there is always
the potential for technology to cause harm—for example, in military applications—the
authors believe that this work does not contribute unduly to these risks. The particular
applications considered in the experiments of this work are focused on household robotics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

19

https://neurips.cc/public/EthicsGuidelines

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: A broader impacts statement is included in the supplemental material. Also
see the response to the previous question.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not release data or models.

Guidelines:

• The answer NA means that the paper poses no such risks.

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the original creators of models (π0.5[24]) and simulators (Kinetix [43])
that we use in the paper. The Kinetix software is released under the MIT license.

Guidelines:

20

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The full code to reproduce the simulated benchmark and its results are provided
in the supplemental material.

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

21

paperswithcode.com/datasets

Justification: The paper does not involve research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The paper does not use LLMs as an important, original, or non-standard
component of the core methods.

Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

22

https://neurips.cc/Conferences/2025/LLM

0.00 0.25 0.50 0.75 1.00
0

4.25

20

40

va
lu

e

1 3 5 7 9 11

0.6

0.7

0.8

0.9

So
lv

e
R

at
e

Delay
0
1
2
3
4

0 d = 15 49
Step

ra
d

Prev. chunk
5 steps
100 steps

5 20 50 150

1.5

2.0

2.5

3.0

ra
d/

s²

Max Acceleration

Figure 7: Top left: The graph of the value 1−τ

τ ·r2
τ

from Eq. 2, which we clip at β. At τ = 0, clipping is needed to

make the value finite. With 5 denoising steps, if β ≥ 4.25, the clipping only determines the guidance weight
for the first step (τ = 0). Top right: An ablation of β in our simulated benchmark. Increasing β provides
no marginal benefit beyond β = 5. Bottom left: Example real robot action chunks generated from the same
noise with 5 denoising steps (n = 5) and 100 denoising steps (n = 100), with lower opacities corresponding to
higher guidance weight clipping (β = {5, 20, 50, 150}). With 5 denoising steps, the generated action chunks
diverge when β is too high. Bottom right: β vs. maximum acceleration (second discrete difference) for a
batch of 325 action chunks generated with d = 15 and n = 5. Higher β leads to more jerkiness, a proxy for
out-of-distribution actions.

A Appendices

A.1 Broader Impacts

The goal of our work is to improve the speed and performance of learned policies for control tasks,
and our experiments primarily deal with household robots. This technology has great potential to
improve lives, e.g., by automating dangerous and difficult jobs, or assisting the disabled and elderly.
Like any technology, it also has the potential for harm—e.g., in military applications, or by displacing
physical labor.

A.2 The Necessity of Guidance Weight Clipping (β)

In Section 3.1, we describe how we adapt the inpainting algorithm from Pokle et al. [48] and Song
et al. [55] to our setting. One modification we make is to add a clipping value, β, which limits weight
applied to the guidance term (Eq. 2), and is necessary to make the weight finite at τ = 02. While
image inpainting typically uses a high number of denoising steps (e.g., n = 100 in [48]), control
problems often use very few steps (e.g., n = 5 in our experiments). In this case, we found that high
guidance weights led to diverging action chunks, as shown in Figure 7, bottom left. Based on a
simulated ablation (Figure 7, top right), we set β to a conservative value of 5.

2An alternative approach to avoid the infinite weight at τ = 0 is to start denoising from τ > 0, used in [48],
which we did not try.

23

A.3 Latency Measurements

Method Latency

RTC (ours) 97ms
BID with N = 16 (no forward model) 115ms
BID with N = 16 (shared backbone) 169ms
BID with N = 16 (full) 223ms

Vanilla π0.5 76ms

Table 1: Latency measurements for various inference-time methods applied to π0.5 [24]. Numbers include
on-GPU neural network inference only, and are averaged over 10 inference calls after 5 warmup calls. Inference
runs on an NVIDIA RTX 4090 GPU using bfloat16 precision and n = 5 denoising steps. BID [39] slows
down inference due to sampling batches of actions, whereas RTC slows down inference due to backpropagating
through each denoising step. BID (no forward contrast) refers to a version of BID without the forward contrast
loss, which elides the need for a second model. BID (shared backbone) refers to a version of BID optimized
specifically for the π0 architecture, where the VLM backbone (3B parameters) is shared between the strong
and weak model, so only two copies of the action expert (300M parameters) are needed. Full BID requires two
copies of the entire model.

Component Time (mobile) Time (non-mobile)

Model 96.89 ± 0.16ms 97.43 ± 0.28ms
Network 21.20 ± 3.12ms 6.89 ± 2.39ms
Image resize 11.22 ± 5.00ms 1.44 ± 0.27ms
Other 9.67 ± 3.20ms 3.00 ± 0.68ms

Total 138.98 ± 6.71ms 108.76 ± 2.34ms

Table 2: Breakdown of total inference latency by component for RTC. The image resizing component happens on
the CPU of the robot computer. In the mobile manipulation case, this computer is an Intel NUC portable computer
with a 12th Gen Intel i7-1260P processor. In the non-mobile case, this computer is a desktop workstation with
an AMD Ryzen 9 7950X processor. In both cases, the model runs on a separate workstation with an NVIDIA
RTX 4090 GPU; the robot computer and the inference workstation are both connected to the same LAN via
a wired Ethernet connection, and communication happens via the WebSocket protocol. Model inference uses
bfloat16 precision and n = 5 denoising steps. Measurements are taken from 50 inference calls during a real
episode rollout, and ± one standard deviation is shown.

Component Time (no RTC) Time (with RTC)

Image encoders (SigLIP) 18ms 18ms
LLM prefill (Gemma 2B) 44ms 44ms
Denoising step (x5) 14ms 35ms

Total 76ms 97ms

Table 3: Breakdown of model inference latency by component for vanilla π0.5 and RTC. Measurements are
taken from a single profiling trace for each method, run on an RTX 4090 GPU. RTC incurs a 2.5x latency
increase per denoising step.

24

A.4 Additional Simulated Ablations

0 1 2 3 4
Inference Delay, d

0.5

0.6

0.7

0.8

0.9

So
lv

e
R

at
e

Average Over Environments

Exponential decay (ours)
Linear decay
No decay

Immediate decay (hard masking)

car_launch cartpole_thrust catapult catcher_v3

chain_lander grasp_easy h17_unicycle hard_lunar_lander

mjc_half_cheetah mjc_swimmer

mjc_walker trampoline

0 1 2 3 4
Inference Delay, d

0.5

0.6

0.7

0.8

0.9

So
lv

e
R

at
e

Average Over Environments

RTC (ours)
BID (Liu et. al.)
Diffuser (Janner et. al.)
Naive async

car_launch cartpole_thrust catapult catcher_v3

chain_lander grasp_easy h17_unicycle hard_lunar_lander

mjc_half_cheetah mjc_swimmer

mjc_walker trampoline

Figure 8: Left: Simulated ablation over different schedules for soft masking weights (Eq. 5). Exponential decay
performs the best overall, although linear decay is very close behind. Right: Comparison with the inpainting
algorithm from Diffuser [26], which overwrites a portion of the action chunk with the desired actions at each
denoising step. While this simpler (and cheaper) inpainting method still provides some benefit, it is outperformed
by our guidance-based approach.

A.5 Hyperparameters

Hyperparameter Description Simulation Real-world

n Denoising steps 5 5
H Prediction horizon 8 50
smin Minimum execution horizon - 25
β Guidance weight clipping 5 5
b Delay buffer size - 10

Table 4: Hyperparameters used for RTC (Algorithm 1). In simulation, d is held constant for each experiment, so
smin and b are not needed. Additional hyperparameters for the simulated experiments can be found in the code.

A.6 Code Release

The code for the simulated experiments is available at https://github.com/
Physical-Intelligence/real-time-chunking-kinetix.

A.7 Compute Resources

All the experiments in this work use no more than 8 NVIDIA H100 GPUs (one NVIDIA DGX server)
at a time. H100s are used via a cloud provider.

Simulated experiments. Training expert policies with RPO [50] with 6 seeds × 12 environments
takes approximately 4 hours on 4xH100s. Generating data from those policies takes approximately 20
minutes on 6xH100s. Training imitation learning policies with flow matching for each environment
takes approximately 1.5 hours on 2xH100s. Evaluating the policies for 2048 trials per environment
takes approximately 5 minutes on 6xH100s.

Real-world experiments. We use policies fine-tuned from the π0.5 [24] base model. Each fine-tuning
run takes approximately 24 hours on 8xH100s. All of our real-world inference is done on a single
NVIDIA RTX 4090 GPU in a workstation in the same building as the robots.

25

https://github.com/Physical-Intelligence/real-time-chunking-kinetix
https://github.com/Physical-Intelligence/real-time-chunking-kinetix

	Introduction
	Preliminaries and Motivation
	Real-Time Chunking via Inpainting
	Inference-Time Inpainting with Flow Matching
	Soft Masking for Improved Cross-Chunk Continuity
	Real-Time Chunking

	Experiments
	Simulated Benchmark
	Real-World Results

	Related Work
	Discussion and Future Work
	Acknowledgements
	Appendices
	Broader Impacts
	The Necessity of Guidance Weight Clipping ()
	Latency Measurements
	Additional Simulated Ablations
	Hyperparameters
	Code Release
	Compute Resources

