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Abstract
Generalist robots that can perform a range of dif-
ferent tasks in open-world settings must be able
to not only reason about the steps needed to ac-
complish their goals, but also process complex
instructions, prompts, and even feedback dur-
ing task execution. Intricate instructions (e.g.,
“Could you make me a vegetarian sandwich?”
or “I don’t like that one”) require not just the
ability to physically perform the individual steps,
but the ability to situate complex commands and
feedback in the physical world. In this work, we
describe a system that uses vision-language mod-
els in a hierarchical structure, first reasoning over
complex prompts and user feedback to deduce
the most appropriate next step to fulfill the task,
and then performing that step with low-level ac-
tions. In contrast to direct instruction following
methods that can fulfill simple commands (“pick
up the cup”), our system can reason through
complex prompts and incorporate situated feed-
back during task execution (“that’s not trash”).
We evaluate our system across three robotic plat-
forms, including single-arm, dual-arm, and dual-
arm mobile robots, demonstrating its ability to
handle tasks such as cleaning messy tables, mak-
ing sandwiches, and grocery shopping.

1. Introduction
A defining feature of intelligence is its flexibility: people
not only excel at complex tasks but also adapt to new situa-
tions, modify behaviors in real time, and respond to diverse
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inputs, corrections, and feedback. Achieving this kind of
flexibility is essential for robots in open-ended, human-
centric environments. For instance, consider a robot tasked
with tidying up a table after a meal: instead of rigidly fol-
lowing a single predefined set of steps, the robot would
need to interpret dynamic prompts like “only take away
someone’s dishes if they are done eating,” respond to cor-
rections like “leave it alone,” and adapt when faced with un-
familiar challenges, such as a delicate object that requires
special handling. This paper aims to advance robotic intel-
ligence by enabling robots to interpret and act on diverse
natural language commands, feedback, and corrections – a
step towards creating agents that reason through tasks, inte-
grate human feedback seamlessly, and operate with human-
like adaptability. If we can enable a robot to process and
engage with complex natural language interaction, we can
unlock not only better instruction following, but also the
ability for users to guide a robot through new tasks and
correct the robot in real time.

Achieving this level of flexibility and steerability in
robotic systems is challenging. While standard language-
conditioned imitation learning can follow simple, atomic
instructions such as “pick up the coke can” (Brohan et al.,
2022), real-world tasks are rarely so straightforward. Imag-
ine a more realistic prompt, such as: “Could you make
me a vegetarian sandwich? I’d prefer it without tomatoes.
Also, if you have ham or roast beef, could you make a sep-
arate sandwich with one of those for my friend?” This re-
quires not only understanding the language, but also the
ability to situate commands within the current context and
compose existing skills (e.g., picking up the roast beef)
to solve a new task. If the robot further receives correc-
tions and feedback (“that’s not how you do it, you have
to get lower, otherwise you’ll keep missing”), these must
also be integrated dynamically into task execution. This
challenge resembles the distinction between Kahneman’s
“System 1” and “System 2” cognitive processes (Kahne-
man, 2011). The “automatic” System 1 corresponds to a
policy capable of executing straightforward commands by
triggering pre-learned skills, while the more deliberative
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Figure 1: Open-ended instruction following. Hi Robot enables robots to follow multi-stage instructions, adapt to real-time corrections
and constraints, complete unseen long-horizon tasks, and respond verbally when needed.

System 2 involves higher-level reasoning to parse complex
long-horizon tasks, interpret feedback, and decide on an ap-
propriate course of action. Prior work in robotic instruction
following has largely focused on atomic instructions (Step-
puttis et al., 2020; Jang et al., 2022; Brohan et al., 2022),
addressing only System 1-level behaviors.

In this paper, we address the more intricate reasoning
needed for complex prompts and feedback by introducing a
hierarchical reasoning system for robotic control based on
vision-language models (VLMs). In our system, the robot
incorporates complex prompts and language feedback us-
ing a VLM, which is tasked with interpreting the current
observations and user utterances, and generating suitable
verbal responses and atomic commands (e.g., “grasp the
cup”) to pass into the low-level policy for execution. This
low-level policy is itself a vision-language model finetuned
for producing robotic actions, also known as a vision-
language-action (VLA) model (Black et al., 2024; Brohan
et al., 2023a; Kim et al., 2024; Wen et al., 2024). We
expect that robot demonstrations annotated with atomic
commands will not be sufficient for training the high-level
model to follow complex, open-ended prompts, and we
therefore need representative examples of complex prompt
following. To acquire this data, we propose to synthetically
label datasets consisting of robot observations and actions
with hypothetical prompts and human interjections that
might have been plausible for that situation. To this end,
we provide a state-of-the-art vision-language model with a
robot observation and target atomic command, and ask it
to come up with a prompt or human interaction that may
have preceded that observation and command, i.e. gener-
ating high-level policy prompts for different outcomes. By
incorporating these synthetically-generated but situated ex-
amples into high-level policy training, our approach gener-
alizes to diverse prompts and interjections while maintain-

ing grounding in the robot’s capabilities.

The main contribution of our paper is a hierarchical
interactive robot learning system (Hi Robot), a novel
framework that uses VLMs for both high-level reasoning
and low-level task execution. We show that our framework
enables a robot to process much more complex prompts
than prior end-to-end instruction following systems and in-
corporate feedback during task execution (Figure 1). While
some of the individual components of this system, such as
the low-level VLA policy, have been studied in prior work,
the combination of these components along with our syn-
thetic data generation scheme are novel and enable novel
capabilities. We evaluate Hi Robot on diverse robots, in-
cluding single-arm, dual-arm, and mobile platforms. Our
evaluation requires the robots to perform a variety of tasks,
including new combinations of skills seen during training,
in the context of scenarios that span cleaning of messy ta-
bles, making sandwiches, and grocery shopping. Our ex-
periments show that Hi Robot surpasses multiple prior ap-
proaches, including using API-based VLMs and flat VLA
policies, in both alignment with human intent and task suc-
cess. By grounding high-level reasoning in both verbal and
physical interaction, Hi Robot paves the way for more in-
tuitive and steerable human-robot symbiosis, advancing the
potential for flexible intelligence in real-world applications.

2. Related Work
Our work relates to research on VLMs for robotic control,
which we can categorize into two groups: directly training
VLMs for robotic control and using VLMs out-of-the-box
with pre-defined robot skills. In the former category, meth-
ods fine-tune VLMs to output robotic controls based on in-
put images and language commands (Brohan et al., 2023a;
Wen et al., 2024; Kim et al., 2024; Black et al., 2024; Liu
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et al., 2024c; Li et al., 2024; O’Neill et al., 2024; Zawal-
ski et al., 2024; Zheng et al., 2025; Pertsch et al., 2025) .
While such methods have demonstrated impressive gener-
alization and instruction-following, they are trained for rel-
atively simple commands (“put the cup on the plate”). In
contrast, we demonstrate tasks with intricate prompts and
human interactions that require situated reasoning.

In the latter category, a number of methods use LLMs and
VLMs to reason over robot observations and commands,
and break up multi-stage tasks into simpler steps that can
be performed by low-level controllers. Earlier methods of
this sort used language models in combination with various
learned or hand-designed skills (Huang et al., 2022; Brohan
et al., 2023b; Liang et al., 2023; Shah et al., 2024; Singh
et al., 2023; Wang et al., 2024), but such systems have lim-
ited ability to incorporate complex context, such as image
observations, into the reasoning process. More recently,
multiple works have use VLMs to output parameters for
pre-defined robotic skills (Huang et al., 2023; Liu et al.,
2024a; Nasiriany et al., 2024; Chen et al., 2024; Liu et al.,
2024b; Stone et al., 2023; Qiu et al., 2024; Zhi et al., 2024).
Such methods can process more complex commands and
situate them in the context of visual observations, but these
approaches have shown limited physical dexterity and lim-
ited ability to incorporate real-time language interaction
with humans (with some exceptions discussed below). In
contrast, our system utilizes VLMs for both high-level rea-
soning and low-level control, with a flexible language in-
terface between the two. These design choices, along with
a new synthetic data generation scheme, allow our system
to achieve both significant physical dexterity and detailed
promptability that prior works lack.

Many works aim to enable robotic language interaction
with users, including model-based systems that parse lan-
guage instructions and feedback and ground them via a
symbolic representation of the scene (Swadzba et al., 2009;
Matuszek et al., 2013; Namasivayam et al., 2023; Patki
et al., 2019), and more recent learning-based methods that
process feedback directly, typically with a hierarchical ar-
chitecture (Liu et al., 2023; Xiao et al., 2024; Shi et al.,
2024; Belkhale et al., 2024; Singh et al., 2024; McCallum
et al.; Driess et al., 2023; Dai et al., 2024). Our work builds
on the latter class of methods, where user feedback is incor-
porated via a high-level policy that provides atomic com-
mands to a learned low-level policy. Unlike OLAF (Liu
et al., 2023), which uses an LLM to modify robot trajec-
tories, our approach can incorporate situated corrections
based on the robot’s observations, respond to those cor-
rections in real time, and follow complex prompts describ-
ing dexterous manipulation tasks. While YAY Robot (Shi
et al., 2024) can handle situated real-time corrections, it
is limited to one prompt and to the corrections seen in
the human-written data; our approach leverages VLMs and

a new data generation scheme to enable diverse prompts
and open-ended corrections. Finally, RACER (Dai et al.,
2024) can also incorporate situated corrections, but relies
on a physics simulator to construct recovery behaviors; our
approach only uses real robot demonstrations without in-
tentional perturbations or corrections and is applicable to
open-ended prompts.

3. Preliminaries and Problem Statement
A learned policy controls a robot by processing observation
inputs, which we denote ot, and producing one or more ac-
tions At = [at,at+1, ...,at+H−1], where we use At to
denote an action chunk consisting of the next H actions to
execute (Zhao et al., 2023). Our system takes as input the
images from multiple cameras I1t , ..., I

n
t , the robot’s con-

figuration (i.e., joint and gripper positions) qt, and a lan-
guage prompt ℓt. Thus, we have ot = [I1t , ..., I

n
t , ℓt,qt],

and the policy represents the distribution p(At|ot). Prior
works have proposed various methods for representing and
training such policies (Zhao et al., 2023; Chi et al., 2023;
Octo Model Team et al., 2024; Pertsch et al., 2025).

Since our focus will be specifically on complex, multi-stage
tasks that require parsing intricate prompts and even dy-
namic user feedback, we need our policies to be able to
interpret complex language and ground it via observations
of the environment. A particularly powerful approach for
handling such complex semantics is provided by vision-
language-action (VLA) models (Black et al., 2024; Brohan
et al., 2023a; Kim et al., 2024; Wen et al., 2024), which
use vision-language model (VLM) pre-training to initial-
ize the policy p(At|ot). A VLM is a language model
that has also been trained to process image inputs, and
represents a distribution p(ℓ′|I, ℓ) – the probability of a
language suffix ℓ′ (e.g., an answer to a question) in re-
sponse to an image-language prefix consisting of an im-
age I and a prompt ℓ (e.g., a visual question). The most
commonly used VLMs represent p(ℓ′|I, ℓ) via an autore-
gressive decoder-only Transformer model, factorizing the
distribution into a product of autoregressive token proba-
bilities p(xt+1|x1, ...,xt, I), where xt denotes the tth token
(not to be confused with a physical time step), and we have
ℓ = [x1, ...,xtp ] and ℓ′ = [xtp+1, ...,xtp+ts ], with tp the
length of the prefix and ts the length of the suffix (Beyer
et al., 2024). We also use such Transformer-based VLMs,
but since we do not modify their architecture and their au-
toregressive structure is therefore not relevant to our dis-
cussion, we will use the more concise p(ℓ′|I, ℓ) notation to
represent a standard VLM.

A standard VLA is produced by fine-tuning the VLM
p(ℓ′|I, ℓ) such that the actions At are represented by tokens
in the suffix ℓ′, typically by tokenizing the actions via dis-
cretization. We build on the π0 VLA (Black et al., 2024),
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Low-Level Policy

(VLA)

User Prompt / Interjection

Low-Level Language Command

Actions

Robot 
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High-Level Policy
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Joints

Figure 2: Overview of hierarchical VLA. The policy consists
of a high-level and a low-level policy. The high-level policy pro-
cesses open-ended instructions and images from base and wrist-
mounted cameras to generate low-level language commands. The
low-level policy uses these commands, images, and robot states
to produce actions and optionally verbal responses.

which additionally handles multiple images and continuous
state observations qt, and modifies the VLM to output con-
tinuous action chunk distributions via flow-matching, but
the high-level principles are similar. While such VLA mod-
els can follow a wide variety of language prompts (Brohan
et al., 2023a), by themselves they are typically limited to
simple and atomic commands, and do not handle the com-
plex prompts and feedback that we study in this paper.

4. Hi Robot
We provide an overview of our method in Figure 2. Our
approach decomposes the policy p(At|ot) into a low-level
and high-level inference process, where the low-level pol-
icy consists of a VLA that produces the action chunk At

in response to a simpler, low-level language command, and
the high-level policy consists of a VLM that processes the
open-ended task prompt, and outputs these low-level lan-
guage commands for the low-level inference process. The
two processes run at different rates: the low-level process
produces action chunks at a high frequency, while the high-
level process is invoked less often, either after a set time or
upon receiving new language feedback. Thus, the high-
level process essentially “talks” to the low-level process,
breaking down complex prompts and interactions into bite-
sized commands that can be converted into actions.

4.1. Hierarchical Inference with VLAs

Formally, the high-level policy phi(ℓ̂t|I1t , ..., Int , ℓt) takes in
the image observations and an open-ended prompt ℓt, and
produces an intermediate language command ℓ̂t. The low-
level policy plo(At|I1t , ..., Int , ℓ̂t,qt) takes in the same type
of observation as the standard VLA described in Section 3,

except that the language command ℓt is replaced by the
output from the high-level policy ℓ̂t. Thus, following the
System 1/System 2 analogy, the job of the high-level pol-
icy is to take in the overall task prompt ℓt and accompa-
nying context, in the form of images and user interactions,
and translate it into a suitable task for the robot to do at
this moment, represented by ℓ̂t, that the low-level policy
is likely to understand. Of course, for simple and familiar
tasks, this is not necessary – if we simply want the robot to
perform a task that the low-level policy was directly trained
for, we could simply set ℓ̂t = ℓt and proceed as in prior
work (Brohan et al., 2022). The benefit of this hierarchical
inference process is in situations where either the prompt ℓt
is too complex for the low-level policy to parse, too unfa-
miliar in the context of the robot data, or involves intricate
interactions with the user.

The high-level policy is represented by a VLM that uses the
images and ℓt as the prefix, and produces ℓ̂t as the suffix.
We describe how this model is trained in Section 4.3.

Since high-level inference is slower but also less sensitive
to quick changes in the environment, we can comfortably
run it at a lower frequency. A variety of strategies could
be used to instantiate this, including intelligent strategies
where the system detects when the command ℓ̂t has been
completed before inferring the next suitable command. In
our implementation, we found a very simple strategy to
work well: we rerun high-level inference and recompute
ℓ̂t either when one second has elapsed, or when a new in-
teraction with the user takes place. This provides reactive
behavior when the user provides feedback or corrections,
while maintaining simplicity.

4.2. Incorporating User Interaction

The user can intervene at any point during policy execution
and provide additional information and feedback, or even
change the task entirely. In our prototype, these interven-
tions take the form of text commands or spoken language
(which is then transcribed into text). When the system re-
ceives a user intervention, the high-level inference is trig-
gered immediately to recompute ℓ̂t. The high-level policy
has the option to include a verbal utterance ut in the com-
mand ℓ̂t, which can be confirmations or clarifications from
the robot. When ut is included, we use a text to speech
system to play the utterance to the user, and remove it from
ℓ̂t before passing it into the low-level policy.

When an interjection (“leave it alone”) has been fulfilled,
the user can signal to the robot that it may switch back
to the previous command and continue the task execution.
Notably, the responses of the high-level policy are contex-
tual, because it observes not only the prompt ℓt, but also
the current image observations. Therefore, it can correctly
ground feedback like “that’s not trash,” which is not possi-
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Figure 3: Data collection and generation for training the high-
level policy. We first collect teleoperated robot demonstrations
and segment them into short skills (e.g., pick up KitKat). Using
this labeled data, we prompt a vision-language model (VLM) to
generate synthetic user instructions (e.g., “Can you get me some-
thing sweet?”) and robot responses. The resulting dataset is used
to train the high-level policy, which maps image observations and
user commands to verbal responses and skill labels.

ble with language-only systems.

4.3. Data Collection and Training Hi Robot

To train Hi Robot in a scalable manner, we employ
both human-labeled and synthetically generated interaction
data, as illustrated in Figure 3. First, we collect robot
demonstration data Ddemo via teleoperation. This yields
trajectories with coarse language annotations of the over-
all goal (e.g., make a sandwich). We then segment these
full demonstration episodes into short skills, ℓ̂t, such as
pick up one piece of lettuce, which generally last between
one and three seconds. We also heuristically extract ba-
sic movement primitives (e.g., small corrective motions)
such as move the right arm to the left from the raw robot
actions. The resulting dataset Dlabeled contains a set of
(ℓ̂t, I

1
t , ..., I

n
t ) tuples that describe robot skills.

Next, we use a large vision-language model (VLM) pgen

to produce synthetic user prompts and interjections ℓt,
and corresponding robot utterance ut. Given Dlabeled, we
prompt pgen with both the visual context I1t , ..., I

n
t and the

skill label ℓ̂t (e.g., pick up the lettuce). pgen then imag-
ines an appropriate interaction that might have led to ℓ̂t in a
real user interaction: it generates possible user prompts ℓt
(e.g., “Can you add some lettuce for me?”) along with the
robot’s verbal responses and clarifications ut. We detail the
generation of the synethetic dataset Dsyn in Appendix A.

We train the high-level policy phi(ℓ̂t|I1t , ..., Int , ℓt) on
Dsyn ∪ Dlabeled using the cross-entropy loss for next-
token prediction. To train the low-level policy
plo(At|I1t , ..., Int , ℓ̂t,qt), we use Dlabeled ∪ Ddemo using a
flow-matching objective, following Black et al. (2024).

4.4. Model Architecture and Implementation

In our implementation, the low-level and high-level poli-
cies use the same base VLM as a starting point, namely
the PaliGemma-3B VLM (Beyer et al., 2024). The low-
level policy is the π0 VLA (Black et al., 2024), which
is trained by finetuning PaliGemma-3B with an additional
flow matching “action expert” to produce continuous ac-
tions, while the high-level policy is fine-tuned on the
image-language tuples described in Section 4.3 to predict
commands. While we employ π0 for our experiments, our
framework is inherently modular, allowing for the integra-
tion of alternative language-conditioned policies as needed.

5. Experiments
In our experimental evaluation, we study a range of prob-
lems that combine challenging physical interactions with
complex user interaction, including multi-stage instruc-
tions, live user feedback in the middle of the task, and
prompts that describe novel task variations. We compare
our full method to prior approaches and to alternative de-
signs that use other high-level policy training methods. The
aims of our experiments are:

1. Evaluate the ability of our method to follow a variety of
complex textual prompts and live user feedback.

2. Compare our full method to prior approaches that train
a flat instruction-following VLA policy or that use foun-
dation models out-of-the-box for high-level reasoning.

3. Evaluate the importance of synthetic data and hierarchy
for task performance and language following.

5.1. Tasks and Baseline Methods

We use three complex problem domains in our experi-
ments, as shown in Figure 4.

Table bussing involves cleaning up a table, placing dishes
and utensils into a bussing bin and trash items into the trash.
The training data consists of full table cleaning episodes.
This task is physically challenging because some items re-
quire nuanced grasping strategies (e.g., grasping a plate by
the edge), the robot must pick up and singulate different
objects, and in some cases might even manipulate some
objects using others (e.g., picking up a plate with trash on
it and tilting the plate to dump the trash into the trash bin).
In our evaluation, the robot receives prompts that substan-
tively alter the goal of the task, such as “can you clean up
only the trash, but not dishes?”, “can you clean up only the
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Figure 4: Task domains used in our evaluation. Across three domains, we evaluate complex instructions, intermediate feedback, and
user interruptions. For example, in Table Bussing, when the user says, “that’s not trash,” the robot correctly puts the bowl back down
instead of putting it away. All images are from policy rollouts.

dishes, but not trash?”, and “bus all the yellowish things”.
This requires the high-level model to reason about the task
and each object (e.g., recognizing that reusable plastic cups
are dishes, while paper cups are trash), then modify the
robot’s “default” behavior of always putting away all items.
This includes understanding what to do and also what not
to do (e.g., avoid touching dishes when asked to collect
only trash). The robot might also receive contextual feed-

back during the task, such as “this is not trash”, “leave the
rest”, or “leave it alone,” which require it to understand the
interjection and respond accordingly.
Sandwich making requires the robot to make a sandwich,
using up to six ingredients as well as bread. This task is
physically difficult, because the robot has to manipulate de-
formable and delicate ingredients that have to be grasped
carefully and placed precisely. The data contains examples
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Figure 5: Comparisons to Prior Methods. Hi Robot outperforms GPT-4o and flat VLA on Table Bussing, Sandwich Making, and
Grocery Shopping. Hi Robot averages over 40% higher instruction accuracy than GPT-4o, showing stronger alignment with user
prompts and real-time observations, and approaches expert human guidance by leveraging its high-level policy.

of different types of sandwiches, with segment labels (e.g.,
“pick up one slice of bread”). We use this task to evalu-
ate complex prompts, such as “hi robot, can you make me
a sandwich with cheese, roast beef, and lettuce?” or “can
you make me a vegetarian sandwich? I’m allergic to pick-
les”, and live corrections, like “that’s all, no more”.
Grocery shopping entails picking up a combination of re-
quested items from a grocery shelf, placing them into a bas-
ket, and placing the basket on a nearby table. This task
requires controlling a bimanual mobile manipulator (see
Figure 4) and interpreting nuanced semantics that involve
variable numbers of objects. Examples of prompts include
“hey robot, can you get me some chips? I’m preparing for
a movie night”, “can you get me something sweet?”, “can
you grab me something to drink?”, “hey robot, can you get
me some Twix and Skittles?”, as well as interjections such
as “I also want some Kitkat”.

Comparisons and ablations. Our comparisons evaluate
our full method and a number of alternative approaches,
which either employ a different type of high-level strategy,
or do not utilize a hierarchical structure. These include:

Expert human high level: This oracle baseline uses an
expert human in place of the high-level model, who manu-
ally enters language commands for low-level behaviors that
they believe are most likely to succeed at the task. This al-
lows us to understand how much performance is limited by
the low-level policy, with ideal high-level commands.
GPT-4o high-level model: This method uses the same
high-level/low-level decomposition as Hi Robot, but
queries the GPT-4o API-based model for the high level,
while using the same low-level policy. GPT-4o is a sig-
nificantly larger VLM than the one we use, but it is not
finetuned with our real and synthetic datasets. This com-
parison is similar to an advanced version of SayCan (Bro-
han et al., 2023b), which uses an out-of-the-box LLM as
a high-level policy, while this baseline uses a VLM. To
align GPT-4o with the robot’s affordances, we carefully en-
gineer the prompt to include task-relevant instructions that
the low-level policy can follow, determined by ranking the

most common skill labels in the human-annotated dataset,
and ask GPT-4o to choose among them.
Flat VLA: This comparison directly uses the same π0 low-
level policy as in Hi Robot, but without any high level or
synthetic data, representing a state-of-the-art approach for
instruction following (Black et al., 2024).
Flat VLA with synthetic data: This ablation uses the
π0 low-level policy by itself, without a high-level model,
but includes the synthetic data in the training data for the
low-level policy, such that it can still process the complex
prompts used in our evaluation. This baseline allows us to
evaluate the benefit of hierarchy independent from the ef-
fect of synthetic data.
Hi Robot without synthetic data: This ablation corre-
sponds to our method without synthetic training data, eval-
uating the importance of including diverse synthetically-
generated prompts in training. This ablation can be seen as
an advanced VLM-based version of YAY Robot (Shi et al.,
2024), a prior system that uses a high-level model to predict
language commands for a low-level model.

5.2. Metrics and Evaluation Protocol

We report two complementary metrics, measured by a hu-
man evaluator who is blind to the method being run. Each
evaluation consists of 20 trials per task per method.

Instruction Accuracy (IA). This score measures how well
the high-level policy’s predicted instruction aligns with hu-
man intent, requiring multi-modal understanding of the
current environment and prompt. If the prediction from the
high-level model is consistent with both the user’s com-
mand and the current observation, the evaluator marks it
as a correct prediction; otherwise, it is labeled as incorrect.
The Instruction Accuracy for a trial is then computed as the
proportion of correct predictions out of the total number
of predictions. For flat baselines, which lack interpretable
language predictions, scoring is based on the evaluator’s
interpretation of the intent of the policy behavior.

Task Progress (TP). Since all tasks we evaluate are com-
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USER PROMPT

LOW-LEVEL COMMAND PREDICTIONS

HI ROBOT W/O SYNTHETIC DATA

pick up one slice 
of cheddar cheese

put Oreo into 
the basket

pick up the 
bowl

pick up 
chopstick

GPT-4o HIGH-LEVEL

pick up one piece 
of lettuce

pick up Twix

put the bowl into 
the bin

pick up 
chopstick

HI ROBOT

pick up one slice 
of cheddar cheese

put Oreo into 
the basket

respond: Done! All 
trash has been 

cleared. Let me know 
if I can help with 
anything else!

respond: Sorry!

open gripper

INPUTS

Can you make me a sandwich with cheese, 
roast beef, and lettuce?

I’m preparing for a movie night. Can you 
get me some Oreo, Twix, and chips?

Can you clean up only the trash, but not 
dishes?

no, not that

IMAGE OBSERVATION

Figure 6: Qualitative Command Comparisons. GPT-4o often (a) misidentifies objects, (b) skips subtasks, or (c) ignores user intent.
Hi Robot consistently produces commands aligned with the robot’s ongoing actions and user requests. Without synthetic data, the high-
level policy aligns well with image observations but ignores user constraints.

plex and long-horizon, we record task progress to provide
a granular view of task completion. Task progress quanti-
fies how closely the robot matches the intended goal and is
computed by the proportion of objects that are successfully
placed in their correct locations or configurations.

5.3. Core Results

We present results for our system and two key baselines:
a GPT-4o policy and a flat VLA method. Quantitative and
qualitative results are in Figure 5 and Figure 6, and we sum-
marize our findings below.

(1) Hi Robot excels at open-ended instruction following.
Across all tasks, Hi Robot exhibits substantially higher In-
struction Accuracy and Task Progress, compared to GPT-
4o and the flat baseline. It properly identifies, picks up, and
places the correct items – even when prompted to handle
only certain objects or omit ingredients (e.g., “I’m aller-
gic to pickles”). In contrast, GPT-4o frequently loses con-
text once physical interaction begins, issuing nonsensical
commands (e.g., “pick up bermuda triangle”) or sometimes
labeling everything as “plate” or “spoon,” which disrupts
long-horizon planning.

(2) Hi Robot shows strong situated reasoning and adap-
tation to feedback. When users modify requests mid-task
(e.g., “leave the rest,” “I also want a KitKat”), Hi Robot up-
dates low-level commands accordingly. GPT-4o, however,
often fails to maintain a coherent internal state, leading to
commands like picking up new objects when the gripper is
still occupied or prematurely switching tasks. The flat base-
line, on the other hand, does not react to real-time feedback.

(3) Hi Robot is effective across diverse tasks, robots,
and user constraints. On single-arm, dual-arm, and mo-
bile bimanual platforms, Hi Robot is able to handle dis-
tinct objects (from fragile cheese slices to tall bottles) while
respecting dynamic constraints (e.g., “bus only yellowish

items,” “don’t add tomatoes”). By contrast, the flat baseline
and GPT-4o often revert to default behaviors (e.g., picking
up every object in sight, or including almost all ingredients
in a sandwich) when the prompt changes mid-episode.

(4) Expert human guidance reveals the low-level pol-
icy’s strengths but underscores the need for high-level
reasoning. With human high-level instructions, the low-
level policy executes nearly flawlessly, showing that fail-
ures stem more from reasoning than actuation. However,
solely relying on human input is not scalable. Hi Robot
bridges this gap via a high-level VLM that aligns with
user prompts and real-time observations, whereas GPT-
4o’s lack of physical grounding and the flat baseline’s lack
of high-level reasoning hinder performance.

5.4. Ablation Studies

We conduct two key ablations to isolate the contributions
of (1) synthetic data for high-level reasoning, and (2) hier-
archical decomposition vs. a single “flat” policy.

(A) Synthetic data is critical for open-ended instruction
following. Comparing Hi Robot (trained on human-labeled
+ synthetic data) to a variant trained solely on human-
labeled data shows that synthetic interactions significantly
boost language flexibility (Figure 7). Without them, the ab-
lated model ignores clarifications (e.g., “this is not trash”)
or includes forbidden items (e.g., pickles), while Hi Robot
smoothly adapts to such feedback, due to the broader cov-
erage of compositional language in synthetic data.

(B) Hierarchical structure outperforms a flat policy. We
next compare Hi Robot to a flat policy trained on the same
synthetic data but without a separate reasoning step (Fig-
ure 8). The flat model often reverts to clearing all items or
fails to handle partial instructions (“bus only the yellowish
things”), whereas Hi Robot re-checks the prompt at each
high-level step and responds coherently to mid-task up-
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Figure 7: Ablation on synthetic data. Synthetic data is essential
for handling open-ended instructions, as the model trained with-
out it struggle with user-driven deviations, failing to integrate clar-
ifications and constraints, whereas Hi Robot adapts seamlessly by
leveraging diverse, compositional language prompts. (IA = In-
struction Accuracy, TP = Task Progress)

Flat VLA w/synthetic data Hi Robot
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Figure 8: Hierarchical policy vs. flat policy. The hierarchical
approach outperforms the flat variant trained on the same data,
as it effectively integrates user feedback and partial instructions,
whereas the flat model struggles with mid-task clarifications and
nuanced task variations. (IA = Instruction Accuracy, TP = Task
Progress)

dates. This suggests separating high-level reasoning from
low-level control is benficial for multi-step coherence and
adapting to dynamic user inputs.

6. Discussion and Future Work
We presented Hi Robot, a system that uses vision-language
models (VLMs) in a hierarchical structure, first reasoning
over complex prompts, user feedback, and language inter-
action to deduce the most appropriate next step to fulfill the
task, and then performing that step by directly outputting
low-level action commands. Our system can be thought of
as a VLM-based instantiation of the “System 1” and “Sys-
tem 2” architecture (Kahneman, 2011). The deliberative
“System 2” layer takes the form of a high-level VLM pol-
icy, which leverages semantic and visual knowledge from
web-scale pre-training to reason through complex prompts
and user interactions. The physical, reactive “System 1”

layer also takes the form of a VLM, trained to directly out-
put robot actions in response to simpler commands that de-
scribe atomic behaviors.

The two VLMs have nearly identical architectures, with the
only difference being that the low-level policy uses flow
matching to output the actions. Indeed, the separation of
roles at the model level is not fundamental to this design: a
natural step for future work is to combine both systems into
one model, and draw the “System 1” vs “System 2” dis-
tinction purely at inference time. Future work could also
interleave high-level and low-level processing more intri-
cately – while our system simply runs high-level inference
at a fixed but lower frequency, an adaptive system might si-
multaneously process inputs and language asynchronously
at multiple different levels of abstraction, providing for a
more flexible multi-level reasoning procedure.

Our system also has a number of limitations that could be
studied in future work. While we show that our high-level
policy can often break down complex commands into low-
level steps that the robot can perform physically, the train-
ing process for this high level model relies in some amount
of prompt engineering to produce synthetic training exam-
ples that induce this behavior. The training process decou-
ples the high-level and low-level models, and they are not
aware of one another’s capabilities except through the train-
ing examples. Coupling these two layers more directly,
e.g. by allowing the high-level policy to be more aware of
how successfully the low-level policy completes each com-
mand, would be an exciting direction for future work. More
generally, by instantiating both high-level and low-level
reasoning via VLMs, we believe that this design opens the
door for much more intricate integration of these compo-
nents, such that future work might create robotic vision-
language-action models that dynamically reason about in-
puts, feedback, and even their own capabilities to produce
suitable situated response in complex open-world settings.
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A. Synthetic Data Generation
A.1. Scenario and Response Categorization

To ensure the quality and diversity of the synthetic data,
we incorporate structured scenario classification and re-
sponse categorization into the prompt design for pgen, fol-
lowing (Stephan et al., 2024). Specifically, we classify
interactions into different scenario types, such as nega-
tive task (where the user instructs the robot what not to
do), situated correction (where the user adjusts an earlier
command based on the evolving task state), and specific
constraint (where the user specifies particular constraints,
such as dietary preferences). In addition, we categorize
the robot’s responses into types such as simple confirma-
tions, clarifications, and error handling. These classifica-
tions guide the generation process to ensure a broad range
of user-robot interactions.

A.2. Prompt Construction for Contextual Grounding

In prompt P , we include a detailed description of the task
(e.g., bussing a table, making a sandwich, grocery shop-
ping) and instruct the model to ground responses in visual
observations and prior context. A key advantage of lever-
aging large pretrained VLMs is their ability to incorporate
world knowledge when generating interactions. For in-
stance, the model can infer dietary constraints when gener-
ating prompts for sandwich-making, producing user com-
mands such as “Can you make a sandwich for me? I’m
lactose intolerant” and an appropriate robot response like
“Sure, I won’t put cheese on it.” Similarly, it can reason
over ambiguous or implicit requests, such as inferring that
“I want something sweet” in a grocery shopping scenario
should lead to suggestions like chocolate or candy.

To maintain consistency in multi-step tasks, we condition
pgen on prior skill labels within an episode ℓ̂0, ..., ℓ̂t−1,
allowing it to generate coherent user commands that
account for past actions. For instance, if the robot
has already placed lettuce and tomato on a sandwich,
the generated user prompt might request additional in-
gredients that logically follow. This ensures that the
synthetic interactions reflect realistic task progression
rather than isolated commands. As such, we leverage
pgen(ℓt, ut|I1t , ..., Int , ℓ̂0, ..., ℓ̂t−1, ℓ̂t,P) to produce a richer,
more diverse synthetic dataset Dsyn that provides mean-
ingful supervision for training our high-level policy.

While in this work we generate a separate Dsyn and train
a separate high-level policy for each task (e.g., sandwich
making vs. table cleaning) for clarity and ease of bench-
marking, the architecture is readily amenable to a unified
multi-task formulation. In principle, the same hierarchical
approach could be used to train a single high-level policy
across a multitude of tasks, facilitating knowledge transfer

between task domains and more robust, open-ended robot
behavior.

B. System and Robot Overview
Our system integrates speech-based interactions and real-
time robotic control. Below, we detail the components of
our system, including audio processing, GPU-based infer-
ence, and the robot configurations.

B.1. Perception and Language Processing

For speech-based interaction, we use a consumer-grade
lavalier microphone for audio input. Speech-to-text tran-
scription is handled locally using Whisper large-v2 (Rad-
ford et al., 2023). For text-to-speech synthesis, we employ
the Cartetia API to generate natural and expressive speech
outputs.

B.2. Inference Hardware

To support real-time inference, we utilize one to two
NVIDIA GeForce RTX 4090 consumer-grade GPUs.

B.3. Robot System Details

We employ three different robot configurations with vari-
ous manipulation and mobility capabilities.

UR5e. This setup features a 6-DoF robotic arm equipped
with a parallel jaw gripper. It includes two cameras: a
wrist-mounted camera and an over-the-shoulder camera.
The system operates within a 7-dimensional configuration
and action space.

Bimanual ARX. This configuration consists of two 6-
DoF ARX arms. The system is equipped with three cam-
eras: two wrist-mounted cameras and one base camera.
The combined system has a 14-dimensional configuration
and action space, enabling dextrous bimanual manipulation
tasks.

Mobile ARX. Built on the Mobile ALOHA (Fu et al.,
2024) platform, this system integrates two 6-DoF ARX
robotic arms mounted on a mobile base. The nonholo-
nomic base introduces two additional action dimensions,
resulting in a 14-dimensional configuration space and a 16-
dimensional action space. Similar to the bimanual setup,
it includes two wrist-mounted cameras and a base camera,
providing robust visual feedback for navigation and manip-
ulation.
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