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Abstract—Autoregressive sequence models, such as
Transformer-based vision-language action (VLA) policies,
can be tremendously effective for capturing complex and
generalizable robotic behaviors. However, such models require
us to choose a tokenization of our continuous action signals,
which determines how the discrete symbols predicted by the
model map to continuous robot actions. We find that current
approaches for robot action tokenization, based on simple
per-dimension, per-timestep binning schemes, typically perform
poorly when learning dexterous skills from high-frequency
robot data. To address this challenge, we propose a new
compression-based tokenization scheme for robot actions, based
on the discrete cosine transform. Our tokenization approach,
Frequency-space Action Sequence Tokenization (FAST), enables
us to train autoregressive VLAs for highly dexterous and
high-frequency tasks where standard discretization methods fail
completely. Based on FAST, we release FAST+, a universal robot
action tokenizer, trained on 1M real robot action trajectories.
It can be used as a black-box tokenizer for a wide range of
robot action sequences, with diverse action spaces and control
frequencies. Finally, we show that, when combined with the
π0 VLA, our method can scale to training on 10k hours of
robot data and match the performance of diffusion VLAs, while
reducing training time by up to 5x.

I. INTRODUCTION

Large, high-capacity Transformer models can be tremen-
dously effective for capturing complex and generalizable
robotic behaviors both from scratch [8, 69, 51, 6, 20, 62]
and using models pre-trained for next-token prediction on
Internet-scale image-text corpora [10, 39, 63, 7, 65]. How-
ever, these models require choosing a tokenization of the
continuous action signal, which determines how the discrete
symbols predicted by the model map to continuous robot
actions [64, 34, 41, 12]. It is widely known that a good choice
of tokenization can be critical to the performance of sequence
models [55, 57]. Prior robotic policies of this sort typically
use naı̈ve tokenization strategies based on a per-dimension,
per-timestep binning scheme [9, 10, 39]. We find that such
methods perform poorly when learning dexterous skills with
high-frequency control (see Figure 2, right). We observe that
correlations between time steps are a major challenge for
naı̈ve tokenization strategies when predicting sequences of
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Fig. 1: We propose FAST, a simple yet effective approach
for tokenization of robot action trajectories via time-series
compression. FAST enables training of autoregressive VLAs
that solve complex dexterous manipulation tasks and gener-
alize broadly to new scenes. We use it to train π0-FAST,
a generalist robot policy that matches the performance of
the state-of-the-art π0 diffusion VLA on dexterous and long-
horizon manipulation tasks, while training 5x faster (top).
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future actions, i.e., action “chunks”, as is common for high-
frequency control. Highly correlated action tokens diminish
the effectiveness of the next token prediction objective used
in autoregressive VLAs. Intuitively, in such cases low token
prediction loss can often be achieved with mappings as trivial
as simply copying the most recent action token, leaving models
in poor local optima.

In this work, we propose a new tokenization strategy
from first principles. Our key insight is that robot action
signals need to be compressed before training, to reduce
correlation between consecutive tokens. We take inspiration
from compression-based tokenization strategies, such as the
byte-pair encoding method commonly used by language mod-
els [27, 57]. However, since robotic actions are continuous,
the corresponding compression strategy should be chosen
accordingly. We therefore base our method off of the discrete
cosine transform (DCT) encoding, which is widely used for
compressing continuous signals such as images (e.g., JPEG
compression). We find that the resulting tokenization approach,
Frequency-space Action Sequence Tokenization (FAST), en-
ables us to train autoregressive VLA policies via simple
next token prediction (see Figure 2, left) for highly dexter-
ous and high-frequency tasks where standard discretization
methods fail entirely. Additionally, FAST for the first time
enables efficient VLA training on the recently introduced
DROID dataset [38], a large-scale multitask “in-the-wild”
robot manipulation dataset. The resulting policy is the first
language-conditioned generalist manipulation policy that can
be successfully evaluated zero-shot in unseen environments,
simply by prompting it in natural language.

Based on FAST, we develop FAST+, a universal robot ac-
tion tokenizer, trained on 1M real robot action trajectories that
cover a large diversity of robot embodiments, action spaces
and control frequencies. We demonstrate that the FAST+ to-
kenizer effectively tokenizes a wide range of robot action
sequences, from single-arm to bi-manual and mobile robots,
and is a good off-the-shelf tokenizer for training autoregressive
VLA models. When integrated with the π0 VLA, FAST-based
autoregressive VLAs scale to training on 10k hours of robot
data and achieve performance comparable to diffusion-based
VLAs across a variety of tasks, while reducing training time
by up to 5x (see Figure 1).

II. RELATED WORK

Tokenization for language, text, and audio. Tokenization is
a key component of training pipelines for modern transformer-
based autoregressive sequence models, and the choice of
tokenization approach can have significant impact on model
training and downstream performance [55]. While there are
multiple works exploring the training of “tokenization-free”
language models [28, 53] that directly operate on bit streams,
most language models today rely on a text tokenization
stage prior to training. A common approach is byte pair
encoding [27, 55], which compresses input text by merging
frequently occurring token sequences into new tokens. For
images, learned compression schemes present an effective
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Fig. 2: Left: FAST tokenization enables training of autoregres-
sive Transformers for dexterous robot control via simple next
token prediction. Right: FAST outperforms popular binning
tokenization schemes, e.g., used in OpenVLA [39], particu-
larly for high-frequency robot data.

approach: input images can be represented as “soft tokens”
produced by a pre-trained vision encoder [44], and full au-
toregressive image input-output can be achieved with a vector-
quantizing autoencoder [22, 59]. Similar approaches can be
extended to the video domain [66]. In audio generation and
speech synthesis, which share the time-series structure of ac-
tion prediction, state-of-the-art models typically encode time-
series audio data using either frequency-domain spectrogram
images [29] or using learned vector quantizers [68].
Vision-language-action models. Recently, multiple works
have developed generalist robot policies [9, 51, 6, 10, 20, 39,
62, 11] that are trained on increasingly large robot learning
datasets [52, 38, 60, 24, 47, 35]. One promising approach for
training generalist policies are vision-language-action models
(VLAs; [10, 17, 39, 67, 7, 63, 73, 71, 13, 11]). VLAs fine-
tune vision-language models, that are pre-trained on internet-
scale image and text data, for robot control. This has multiple
benefits: using large vision-language model backbones, with
billions of parameters, provides policies with the necessary
expressivity for fitting large robot datasets. Reusing weights
pre-trained on internet-scale datasets also improves the ability
of VLAs to follow diverse language commands and generalize,
e.g., to new objects and scene backgrounds [10, 39, 67, 63, 36].
Most VLA models today are confined to rather simple, low-
frequency control tasks, particularly models that use the most
common autoregressive VLA design [10, 39]. We show that
this is a direct consequence of the action tokenization schemes
employed by these models, which make training on dexterous
tasks challenging. We introduce a new action tokenization



approach that allows us to train the first autoregressive VLAs
on dexterous and high-frequency robot data.
Action representations for VLA training. Prior works have
explored various action parameterizations for training robot
policies, including VLAs. One line of work uses “semantic”
action representations like language sub-tasks [21, 2, 4], or
keypoints [50, 32, 25, 19]. Such approaches can often learn
from few examples or even perform tasks zero-shot without
any robot examples [50, 32, 25], but require hand-designed
low-level controllers for task execution, limiting their gener-
ality. An alternative approach directly trains VLAs to output
low-level robot control commands given image and language
instruction inputs. The most common design directly embeds
actions into discrete tokens, that can be generated with stan-
dard autoregressive sequence models, like any popular vision-
language model. Existing approaches map from continuous
robot actions to discrete action tokens using a simple per-
dimension, per-timestep binning scheme [9, 10, 39]. We find
that this scheme struggles to scale to high-frequency robot
control tasks. We propose a new tokenization scheme for
robot actions, based on time-series compression techniques,
that allows us to train autoregressive VLAs on high-frequency
data. A number of works have also proposed alternatives
to tokenization, for example by using regression heads or
introducing new weights for diffusion decoding [20, 7, 41, 63].
In comparison, our approach does not require modifications of
the underlying pre-trained transformer model, can easily be ap-
plied to any pre-trained autoregressive transformer model, and
achieves competitive performance to state-of-the-art diffusion-
based VLAs [7] across many tasks, while being significantly
more compute efficient to train.

Another set of related work explores vector-quantized action
representations [41, 3, 49]. Such approaches train a vector-
quantized encoder-decoder network, for which reconstruction
quality can be sensitive to hyperparameter choices and struc-
ture [66]. We find that these methods perform well at coarse,
low-fidelity reconstruction tasks, but fail on high-frequency
tasks when fine-grained control is required. In comparison, our
FAST tokenization scheme has few hyperparameters and can
reconstruct actions with high precision while offering strong
compression properties.

III. PRELIMINARIES

Problem formulation. Our goal is to train policies π(a1:H |o)
that map an observation o to a sequence of future robot
actions a1:H . We assume that policies output an “action
chunk” [69, 40], a sequence of H actions [15, 7, 69], which
makes it easier to produce temporally-consistent actions and
reduces compounding error. The goal of action tokenization is
to define a mapping Ta : a1:H → [T1, . . . , Tn] from a sequence
of continuous actions a1:H , with dimensionality |A|, to a
sequence of n discrete tokens T ∈ |V| from a vocabulary of
size |V|. Note that the number of tokens n may differ between
action sequences, just like sentences of the same length may
be tokenized into a variable number of text tokens.

Fig. 3: Effect of sampling rate on prediction performance.
We train a small autoregressive transformer model on a
didactic interpolation task, in which the network must predict
the black dashed curve given the four circles. We find that
models trained with the binning tokenization approach used in
prior VLAs [10, 39] produce increasingly poor predictions as
we increase the sampling frequency of the underlying signal,
due to strong correlation between consecutive tokens at high
frequencies. Our FAST tokenization approach, based on the
discrete cosine transform (DCT), addresses the problem and
leads to high-quality predictions across all sampling rates.

Binning-based action tokenization. The most commonly
used approach for action tokenization is a simple binning dis-
cretization scheme [8, 10, 39, 72, 56]. For a given action a, this
approach discretizes each dimension independently, dividing
the range of values in the training dataset into N uniform
bins, most commonly using N = 256. For a sequence of D-
dimensional actions a1:H , this tokenization scheme would be
applied to each time step, resulting in a final token sequence
Ta

(
a1:H

)
= [T1,1, . . . , T1,D, . . . , TH,1, . . . , TH,D]. For high-

frequency robot data, this tokenization scheme is sub-optimal:
it can easily produce hundreds of tokens per action chunk,
which make training challenging and lead to slow inference.

IV. CASE STUDY: HOW DOES TOKENIZATION AFFECT
VLA TRAINING?

To illustrate the challenge of training autoregressive poli-
cies with current action tokenization approaches, we start



with a simple didactic example. We create a synthetic time-
series dataset where the goal is to predict a cubic spline
that interpolates four randomly-generated points (see Fig-
ure 3, bottom). This toy problem reflects the challenge faced
by policies trained on high-frequency action chunks, which
must predict a sequence of continuous actions given some
conditioning information. We tokenize the target sequences
using the naı̈ve tokenization scheme employed in previous
VLA policies, which discretizes each element in the sequence
separately into one of 256 bins (see Section III). We then
train a small, autoregressive transformer policy to predict the
tokenized signal given the conditioning points. We repeat this
experiment for different sampling rates of the target signal,
from 25 to 800 timesteps per sequence, without changing
the underlying dataset. This emulates training autoregressive
policies on action data collected at different frequencies.

The average prediction MSE of autoregressive models
trained at different frequencies is shown in Figure 3, top
(“naive”). We observe that the model with binning tokenization
achieves good prediction performance (i.e., low MSE) for
low sampling rates. But as the sampling rate increases, the
prediction error steeply increases, until eventually the model
simply copies the first action, as seen in the qualitative
visualization in Figure 3, bottom left. Note that this issue
cannot be attributed to the data itself: the complexity of the
underlying data distribution does not change, and we would
expect a model with the same capacity trained for the same
number of steps to achieve comparable performance across all
sampling rates. So what happened?

To understand how the tokenization scheme impacts learn-
ing performance, we need to look at the learning objective
itself. Fundamentally, autoregressive models are trained to
predict the next token, given all previous tokens. As such, their
learning signal is proportional to the marginal information
content of Ti given T1:i−1. Crucially, when using the naı̈ve
per-timestep tokenization scheme, this marginal information
approaches zero as the control frequency of the training signal
increases: for smooth signals, as timesteps get shorter the
change per timestep decreases proportionally. This greatly
slows down the rate of convergence during training and can
make it challenging to fit complex, high-frequency datasets.
Indeed, such challenges have been observed in prior work.
For instance, OpenVLA worked well on the low-frequency
BridgeV2 and RT-1 datasets, but has struggled to fit the higher-
frequency DROID dataset [39]. The result of our case study
underlines the importance of designing better tokenization
schemes for robot actions.

V. EFFICIENT ACTION TOKENIZATION VIA TIME-SERIES
COMPRESSION

We saw in the previous section how redundancy in high-
frequency action trajectories can lead to low marginal in-
formation for each action token, and thereby poor training
performance. To address this, we need a tokenization approach
that compresses the highly redundant action signal into a
smaller number of high-information tokens. In this section,

we will first describe a simple approach for compressing
continuous time series (V-A), then use it to design an action
tokenization algorithm (Section V-B), and finally explain how
we train a universal tokenizer for robot actions (Section V-C).

A. Time-Series Compression via Discrete Cosine Transform

There is a rich body of work on effectively compressing
continuous time series, from approaches that compress signals
after transforming them into the frequency domain [18, 1, 61]
to learned compression approaches, e.g., based on vector
quantization [59, 48]. One key takeaway of our work is that
any sufficiently effective compression approach, when applied
to the action targets, is suited to improve the training speed of
VLA models. In practice, there are a few considerations that
may still lead us to favor some compression algorithms over
others, e.g., the complexity of training the tokenizer, and how
efficient is it at tokenizing and detokenizing actions.

In this work, we use a compression algorithm based on
the discrete cosine transform (DCT) [1]. DCT is a frequency-
space transform that represents a continuous signal as a sum
of cosine elements of various frequencies. Low frequencies
capture the overall shape of the signal, while high-frequency
components reflect sharp jumps. DCT is a commonly used
transformation for compression algorithms, e.g., for JPEG im-
age compression [61], due to its simplicity and computational
efficiency, and its strong compression property on practical
images: since pixels often vary smoothly, DCT can often
represent most of the information of an input signal in only
a few coefficients. Signals can be compressed by omitting
frequency components with low weights. Compared to learned
compression approaches based on vector quantization, DCT-
based compression is an analytical approach, thus extremely
simple and fast.

B. The FAST Tokenization Algorithm

We use the discrete cosine transform to design FAST, a
quick and effective tokenization approach for robot actions.
We detail the steps from raw robot actions to action tokens
in Figure 4. We first normalize the input actions, such that
the 1st and 99th quantile of values in the training dataset for
each action dimension maps to the range [−1, . . . , 1]. This
initial normalization step is useful to bring the data into a
specified range and also makes tokenization of cross-embodied
datasets with different action scales easier. We use quantiles
to be robust to outlier actions which occasionally occur in
large robot datasets. After the data is normalized, we apply the
discrete cosine transform to each action dimension separately.
To compress the DCT-converted signal we can simply omit
insignificant coefficients, which we implement through a scale-
and-round operation, where the scaling coefficient is a hyper-
parameter that trades off between lossiness and compression
rate of the tokenization operation.

After the rounding operation, the DCT coefficient matrix
is typically sparse, with most entries being zero and only a
few significant coefficients remaining per action dimension. To
actually realize the compression, we must convert this sparse
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Fig. 4: Overview of the FAST action tokenization pipeline. Given a normalized chunk of actions, we apply discrete cosine
transform (DCT) to convert the signal to the frequency domain. We then quantize the DCT coefficients and use byte-pair
encoding (BPE) to compress the flattened sequence of per-dimension DCT coefficients into the final action token sequence.
See Section V-B for a detailed description.

matrix into a sequence of dense tokens. We flatten the matrix
into a 1-dimensional vector of integers, interleaving action di-
mensions by including all low-frequency components first, and
train a byte pair encoding (BPE) tokenizer [27] to losslessly
compress it into dense action tokens. The BPE step “squashes”
the zero-valued components and merges frequently-occurring
coefficient combinations across action dimensions. We choose
BPE to compress the DCT matrix, since many efficient im-
plementations exist and it can produce a fixed-size output
vocabulary that can be easily integrated into the existing
vocabulary of vision-language models for VLA training. Other
lossless compression algorithms like Huffman coding [33] or
Lempel-Ziv methods [75] (the algorithms underlying the gzip
compression approach) could be used instead, but we leave
this investigation for future work.

Note that the order of flattening the |A|×H DCT coefficient
matrix prior to BPE encoding can have significant impact on
policy training. There are two options: column-first flattening,
i.e., concatenate the lowest-frequency components for each
dimension first, or row-first flattening, i.e., concatenating all
frequency components for a single action dimension first. We
choose the former, since we find that predicting the low-
frequency components, that characterize the overall shape of
the output sequence, first during autoregressive prediction
leads to more stable policy rollouts.

All operations in our tokenization pipeline are easily invert-
ible, allowing fast decoding of predicted actions. The tokenizer
has only two hyperparameters: the scale applied to the DCT
coefficients before rounding, and the vocabulary size of the
BPE compression step. We find that both parameters are not
very sensitive, and we use the same values across all our
single-dataset tokenization experiments (rounding scale 10,
BPE vocabulary size 1024). This is in contrast to end-to-end
learned compression modules that rely on vector quantiza-

Algorithm 1 FAST Tokenizer

Require: scale γ, (for inference) BPE dictionary Φ
procedure FASTTOKENIZER(a1:H )

Ci
j ← DCT

(
ai1:H

)
▷ Compute DCT coefficients

C̄i
j ← round

(
γ · Ci

j

)
▷ Quantize coefficients

[Tk]←
[
C̄1

1 , C̄
2
1 , . . . , C

1
2 , . . . , C

n
H

]
▷ Flatten tokens

BPE Training:
ϕ← TrainBPE(D := {[Tk]})

Tokenization:[
T̄1, . . . , T̄k̄

]
← BPE ([T1, . . . , Tk], ϕ)

return action tokens

tion [59]. Such networks are often tedious to train, and require
careful dataset-specific hyperparameter selection to achieve
good reconstruction [66, 48]. Our experiments show that
our DCT-based tokenization approach trains higher-performing
policies than VQ-based approaches, while being significantly
simpler and easier to tune.

We empirically demonstrate the benefits of our DCT-
based tokenization in the toy example from Section IV.
Figure 3 shows that training the autoregressive model on DCT-
compressed target tokens achieves constantly low prediction
error across a wide range of sampling frequencies. We provide
a concise summary of our tokenization approach in Algo-
rithm 1 and test the effectiveness of FAST tokenization on
robot control problems in Section VI.

C. A Universal Robot Action Tokenizer

The only learned component of our tokenizer is the vo-
cabulary of the BPE encoder, which needs to be trained for
each new dataset that the tokenizer is being applied to. While
this learning process is fast (typically only a few minutes),
it adds additional friction to using FAST tokenization. Thus,



we aim to train a universal action tokenizer, that can encode
chunks of robot actions from any robot. To this end, we train a
tokenizer using the pipeline described above on a large, cross-
embodied robot action dataset, consisting of approximately
one million 1-second action chunks from single-arm, bi-
manual and mobile manipulation robots, with joint and end-
effector control action spaces and various control frequencies.
We provide a detailed breakdown of the data mixture used
for training the universal tokenizer in Appendix A. Once
trained, our universal action tokenizer, FAST+, can be applied
as a black-box tokenizer on 1-second action sequences from
any robot setup. Our experimental evaluation shows that it is
competitive to tokenizers tuned for individual datasets.
Code release. We release our pre-trained universal ac-
tion tokenizer, FAST+, in a convenient HuggingFace
AutoProcessor class, that makes it easy to apply the
tokenizer to any new robot action chunk in three lines of code:
from transformers import AutoProcessor

tokenizer = AutoProcessor.from_pretrained(
"physical-intelligence/fast",
trust_remote_code=True

)
tokens = tokenizer(action_chunk)

For best compression results, we recommend normalizing
input actions to range [−1, . . . , 1] via quantile normalization
as described in Section V-B, and tokenizing 1-second action
chunks at a time. Our module also makes it easy to train a
new FAST tokenizer on a given dataset of action chunks:
from transformers import AutoProcessor

tokenizer = AutoProcessor.from_pretrained(
"physical-intelligence/fast",
trust_remote_code=True

)
new_tokenizer = tokenizer.fit(action_dataset)

VI. EXPERIMENTS

In our experiments, we test FAST with two VLA backbones:
π0 [7] and OpenVLA [39]. We compare FAST to alternative
action tokenization schemes and ablate key design decisions.
We then compare π0 models trained with FAST tokenization
to the state-of-the-art π0 flow-matching (diffusion) VLA, and
test the scaling of autoregressive VLA training with FAST to
large, cross-embodied datasets with 10k hours of dexterous
robot manipulation data.

A. Experimental Setup

Policy implementation. We test different tokenization
schemes for autoregressive VLA training with popular VLA
backbones. For most of our experiments, we use π0 [7],
a VLA based on PaliGemma-3B [5]. We also test with
OpenVLA [39], which is built on Prismatic 7B [37]. During
training, we tokenize 1-second action chunks and overwrite the
least used tokens in the VLM vocabulary with the resulting
action tokens, following prior VLAs [10, 39]. We fine-tune

Fig. 5: Evaluation environments. We test FAST across
7 evaluation environments: 6 real-robot tasks and 1 simulation
environment. The tasks are designed to test VLA performance
on highly dexterous tasks, like folding cloths from a laundry
basket (“Laundry Folding”), and generalization, e.g., zero-shot
table-top manipulation in unseen environments (“DROID”).

the VLA models for robot action prediction, without weight
freezing. We provide more details on the policy training setup
in Appendix C.
Evaluation tasks. We develop a suite of 7 evaluation tasks
(6 real robot, 1 simulated; see Figure 5), designed to test
VLA performance on both, highly dexterous tasks like laundry
folding, and generalization tasks, like performing table-top
manipulations 0-shot in unseen environments.

• Libero: We test on the Libero [43] simulated benchmark
suites. We measure average performance across Libero-
Spatial, Libero-Object, Libero-Goal, and Libero-10.

• Table bussing [7] (20 Hz): a UR5 single-arm robot needs
to clean a table, sorting 12 objects into a trash bin (for



trash) and a plastic container (for plates, bowls, cups and
cutlery). The task requires precise grasping of various
objects.

• T-Shirt folding [7] (50 Hz): a bi-manual ARX robot
setup needs to fold various shirts on a stationary table
top. At the beginning of the task, the shirts are placed
flat on the table. Succeeding at the task requires precise
grasps and movements to fold the shirt.

• Grocery bagging [7] (20 Hz): a UR5 single-arm robot
needs to pack seven objects from a table into a grocery
bag, taking care to not topple or rip the bag in the process.
This task requires picking a diverse set of objects and
carefully inserting them into the bag.

• Toast out of toaster [7] (50 Hz): a bimanual Trossen
Viper-X robot needs to remove two slices of bread from
a toaster and place them on a plate. This task requires
precise grasping and placement of the bread slices.

• Laundry folding [7] (50 Hz): a bi-manual ARX robot
needs to take shirts and shorts from a basket, flatten them
on a table, fold and stack them. This is the most dexterous
task we test. It requires precise grasps, dynamic motions
to flatten the cloths, retrying and corrections when cloths
got tangled up, and precise placements of the folded
cloths on the existing stack of cloths. We report success
rate on individual clothing items.

• Zero-shot DROID tabletop manipulation [38] (15 Hz):
we test a policy trained on the full DROID dataset across
various table-top manipulation tasks like picking and
placing objects, wiping, opening and closing drawers etc.
Importantly, we test the policy in a completely unseen
environment, with a new table setup, background, novel
objects, viewpoint and table height. To our knowledge,
this is the first “zero-shot” evaluation of DROID policies
in a completely unseen environment, without co-training
or fine-tuning, simply by prompting a pre-trained model
with natural language.

Following Black et al. [7], we use grocery bagging, the toaster
task, and laundry folding only to evaluate our most powerful,
generalist VLA in Section VI-F. We provide additional details
on training datasets and evaluation tasks in Appendix E.

Comparisons. We test FAST, our DCT-based action tokeniza-
tion approach, trained on each evaluation dataset individually,
and FAST+, our universal DCT-based action tokenizer, trained
on a large dataset of 1M action sequences. Note that we
trained the universal tokenizer on the most diverse real robot
dataset we could assemble, which includes data from our real-
robot evaluation tasks. We compare both tokenizers to the
per-dimension binning scheme used by prior autoregressive
VLAs like RT-2 [10], RT-2-X [52] and OpenVLA [39], dubbed
naı̈ve tokenization. We apply the binning tokenization to each
time step in the action chunk separately and then concatenate.
Finally, while our approach provides a compressed tokeniza-
tion without the need to train any separate model, we can
consider an alternative compression scheme that instead trains
a model to produce a quantized representation of the action

chunk via FSQ [48], a simpler alternative to VQ-VAE [59].
This tokenization strategy has been previously used to tokenize
high-dimensional image data [48, 66], and can be viewed
as an ablation of our compression-based approach, utilizing
compressed representations but with a more complex learning-
based alternative to our relatively simple DCT-based method.

B. Comparing Action Tokenizers for VLA Training

Dataset Action
Dimension

Control
Frequency

Avg. Token CompressionNaive FAST

BridgeV2 7 5 Hz 35 20 1.75
DROID 7 15 Hz 105 29 3.6
Bussing 7 20 Hz 140 28 5.0
Shirt Fold 14 50 Hz 700 53 13.2

TABLE I: Comparison of the average token count per
action chunk for naı̈ve tokenization and FAST. We use 1-
second chunks in all datasets. With our method, each chunk
requires many fewer tokens, particularly for high-frequency
domains such as the T-shirt folding task, indicating that it is
more effective at removing redundancy.

We first provide a comparison of compression rates between
our proposed FAST tokenizer and the naı̈ve binning scheme
used in prior works in Table I. We use 1-second action chunks
from datasets with various action dimensionalities and control
frequencies. For both approaches we use the default hyper-
parameters, which have comparable tokenization errors. We
see that FAST achieves a significant compression of the input
action sequences across all datasets. The compression benefits
are especially pronounced for datasets with high-frequency
action data. Interestingly, FAST consistently generates roughly
30 action tokens per chunk per robot arm (i.e., 60 tokens for
the bi-manual setup) in each of the domains. This suggests that
FAST finds a representation that approximates the complexity
of the underlying action signal, and is largely independent of
the frequency of the action data.

We note that this compression is not entirely lossless,
with a trade-off between compression ratio and reconstruction
accuracy determined by the scale parameter γ from Algo-
rithm 1. Figures in Table I are at comparable reconstruction
accuracy. Please see Appendix B for plots showing the trade-
off between compression and fidelity for each of the tokenizers
we compare.

Next, we train policies using the policy architecture and
tokenization approaches described in Section VI-A. We report
results in Figure 6.

Overall, we find that the naı̈ve tokenization applied in
prior works struggles to learn effective policies on high-
frequency robot data. This is particularly apparent for the
highest frequency tasks in our evaluations: Table Bussing
(20Hz) and T-Shirt Folding (50Hz). On both tasks, policies
trained with naı̈ve tokenization are unable to make progress
on the task.

In contrast, we find that compression-based tokenization
leads to effective training. Comparing FAST to our FSQ
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Berkeley

Stanford U. Washington

Fig. 7: Evaluation environments of FAST policy trained
on DROID [38]. We find that the same policy checkpoint
generalizes robustly, and performs various simple table-top
tasks zero-shot across three university campuses.

baseline, we find that FAST is as good or at times better,
particularly on the dexterous, high-frequency tasks, despite
being much simpler and requiring no separate neural network
training.

Notably, FAST tokenization enables the first success-
ful training of a strong generalist policy on the DROID
dataset [38], which can be evaluated zero-shot in unseen
environments, without fine-tuning, by simply prompting it
in natural language. All prior works, including the original
DROID paper [38] and OpenVLA [39], did not show zero-shot
results and focused entirely on co-training or fine-tuning eval-
uations instead. We demonstrate the generality of our DROID
policy by testing it on various table-top manipulation tasks
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Fig. 8: Universal tokenizer. We test the compression rate
achieved by our FAST+ tokenizer vs. naı̈ve tokenization across
diverse robot datasets, unseen during tokenizer training. We
find that FAST is effective across a wide range of robot
morphologies, action spaces and control frequencies.

in environments across three university campuses (Figure 7).
Out of the box, the policy can competently perform simple
manipulation tasks, like picking and placing objects, opening
and closing cupboards and turning on faucets, across a wide
range of scenes and camera viewpoints. Even unsuccessful
trials show sensible behavior, like approaching the handles of
microwave and dish washer doors, even if ultimately failing
to open them. We show success and failure videos on our
website. While far from perfect, the level of generality and
robustness of this policy substantially exceeds that of prior
DROID policies.

C. Universal Action Tokenizer

In this section, we evaluate the performance of our universal
action tokenizer, FAST+, which we trained on 1M real robot
action sequences (see Section V-C). To test the generality
of the tokenizer, we assemble a diverse set of small testing
datasets. This set spans a wide range of robot morphologies,
action spaces, and control frequencies (see Figure 8, with a full
list of datasets in Table III). Note that none of these datasets is
part of the tokenizer training set. They thus test a scenario in



which the tokenizer is applied to a completely new robot setup
without recomputing the tokenization. We find that the FAST+
tokenizer achieves good compression performance across a
wide range of robot datasets, reducing the number of action
tokens by 2x across all datasets, and significantly more on
some.

We also test performance of the universal tokenizer for
policy training, and report results alongside the per-dataset
tokenizers in Figure 6. Across all tasks, the universal tok-
enizer closely matches the performance of the dataset-specific
FAST tokenizers, suggesting that the universal tokenizer can
be used as a strong default for robot action tokenization.

D. Ablation Studies

We analyze two key aspects of our method: (1) Is our
FAST tokenization approach independent of the underlying
VLA backbone? (2) How important is the BPE compression
step, the only learned component of our tokenization pipeline.

T-Shirt Folding

% Success

OpenVLA OpenVLA + FAST

100

80

60

40

20

To answer the first question, we
train an OpenVLA policy [39] on
the challenging high-frequency T-
shirt folding dataset, comparing
the naı̈ve tokenization approach
originally used in OpenVLA to
our FAST+ tokenizer. To comply
with the task setup, we modify the
OpenVLA model code to accept
multiple input images and predict
1-second action chunks. The re-
sults on the right demonstrate that FAST is able to significantly
boost performance of OpenVLA, enabling it to train effectively
on high-frequency robot manipulation data. This suggests, that
our tokenization approach is independent of the underlying
model backbone, and may be easily applied to a wide range
of pre-trained autoregressive transformer models.

FAST FAST without BPE
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Secondly, we ablate the BPE
encoding step on the table buss-
ing and T-shirt folding tasks. The
figure on the right shows that
the resulting policies without BPE
encoding achieve worse rollout
performance (but still outperform
naı̈ve tokenization). Intuitively, the
DCT transform still concentrates
most of the signal’s information
in a few tokens, improving the
learning signal. However, without
BPE, there is a large number of repeated 0-tokens which dilute
the learning signal and also significantly slow down inference,
since models need to autoregressively predict hundreds of
action tokens, ultimately leading to worse policy performance.

E. Comparing FAST to Diffusion

In this section, we compare π0, a state-of-the-art diffusion
VLA, to our model that combines π0 with FAST and uses
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Fig. 9: Comparison of diffusion π0 [7] to our π0 model with
FAST decoding on single-task training. On small datasets
(Libero, T-Shirt Folding), both perform comparably. On large
datasets (Table Bussing), FAST converges faster. In DROID,
we find that FAST follows language instructions better. We
report mean and 95% CI.

autoregressive decoding. We compare the performance of both
models on the tasks from Section VI-B.

We report results in Figure 9. We find that on small
datasets (Libero, T-Shirt Folding; <50h), both VLAs perform
comparably. However, on large datasets like Table Bussing,
we find that the FAST-based VLA converges significantly
faster, reaching high performance with 3x fewer training steps
than the diffusion variant of π0. Additionally, we find that
the autoregressive π0 model trained with FAST tokenization
follows language instructions more closely: in the DROID
evaluations, the diffusion π0 model often ignores the language
instructions, leading to a lower score. We will leave a detailed
investigation of the language following abilities of diffusion
and autoregressive VLAs to future work.

One current limitation of the autoregressive VLA is its
inference speed: while π0 with diffusion typically predicts one
second action chunks within 100ms on an NVIDIA 4090 GPU,
the π0 model with FAST tokenization needs approximately
750ms of inference time per chunk, since it must perform
more autoregressive decoding steps (typically 30-60 action
tokens need to be decoded, vs. 10 diffusion steps for diffusion
π0) and use the full 2B parameter language model backbone
for autoregressive decoding (vs. a 300M parameter “action
expert” for diffusion π0). While we did not find this slower
inference to hurt performance on the static manipulation
tasks we evaluated, it made evaluations significantly slower.
Going forward, there are many techniques for accelerating the
inference of discrete, autoregressive transformer models that
are used extensively in the LLM literature (e.g., speculative
decoding, quantization, custom inference kernels, etc.), but we
will leave an investigation of these to future work.
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F. Scaling Autoregressive VLAs to Large Robot Datasets

We have demonstrated FAST’s effectiveness for training
autoregressive VLAs on individual robot datasets, but does
it scale to training dexterous generalist policies? To test this,
we train the π0-FAST model from the previous section on the
cross-embodied robot data mixture used by π0 [7], the largest
dexterous robot manipulation dataset to date. It includes 903M
timesteps from our own datasets. Additionally, 9.1% of the
training mixture consists of the open-source datasets BRIDGE
v2 [60], DROID [38], and OXE [52].

We compare zero-shot performance to the diffusion π0

model on the tasks from Black et al. [7] in Figure 11. Overall,
we find that the autoregressive π0-FAST model matches the
performance of the diffusion π0 model, including on the most
challenging laundry folding task, while requiring signifi-
cantly less compute for training. We show a qualitative
example of π0-FAST performing the laundry folding task in

Figure 10 and include additional videos on our website.
Importantly, we find that π0-FAST converges significantly

faster than the diffusion π0 model: the model in the evaluations
above required 5x fewer GPU hours for training than the π0

model from Black et al. [7]. We show robot evaluation results
for multiple checkpoints throughout the course of training in
Figure 1 (averaging performance on two representative tasks:
table bussing and t-shirt folding). The results show clearly
that π0-FAST achieves high performance significantly faster.
For state-of-the-art VLA training runs, which can often use
thousands of GPU hours, a 5x reduction in required compute
is significant. We include a full comparison across all tasks
for a compute-matched π0 checkpoint in Appendix, Figure 15
and find that the same conclusions hold: π0-FAST clearly
outperforms compute matched π0 due to its faster convergence.

To summarize, we have demonstrated that FAST tokeniza-
tion allows us to train autoregressive VLAs on complex, dex-
terous robot tasks that prior tokenization schemes completely
fail on. We have also shown that FAST, when combined with
state-of-the-art VLAs like π0, scales to training generalist,
cross-embodied policies that rival the performance of the best
diffusion VLAs while being significantly faster to train.

VII. DISCUSSION AND FUTURE WORK

In this paper, we introduced FAST, an efficient action
tokenizer for high-frequency robotic control data. FAST uses
the discrete cosine transform (DCT) followed by byte-pair
encoding (BPE) to compress action chunks, leading to sig-
nificantly better compression than existing action tokenizers
across a range of robotics domains. Our real-world and simu-
lated VLA experiments show that FAST leads to dramatically
improved performance over the previously used naı̈ve action
discretization approaches, and outperforms more complex
learned tokenization methods based on vector quantization.
We also showed that we can train FAST+, a universal action
tokenizer, that can serve as a strong default tokenizer for
any robot action sequence. Using it, we trained π0-FAST,
a dexterous generalist policy that can match performance of



state-of-the-art diffusion VLAs, while being significantly more
efficient to train.

There are many exciting directions for future work:
Action tokenizers. While we believe that FAST is a signifi-

cant step toward general purpose robot action tokenizers, many
questions remain. In this work, we tested FAST on static robot
manipulators. Our offline experiments demonstrated promising
compression capabilities of FAST+ on other robot morpholo-
gies like mobile robots, dexterous hands, and humanoids.
Testing actual policy performance on these platforms is an
exciting direction for future work. Additionally, exploring al-
ternative compression schemes, and testing the combination of
compression-based action encodings with non-autoregressive
decoding approaches like diffusion [7] are interesting direc-
tions for future investigation.

VLA architectures. Our paper has taken initial steps to
explore the trade-offs between two major classes of VLA
architectures, autoregressive and diffusion decoding VLAs, but
the jury on the best VLA architecture is still out. Future work
should carefully explore trade-offs in training speed, language
grounding abilities, and expressiveness of either approach.

Inference speed. While π0-FAST matches the overall per-
formance of diffusion π0, it is slower at inference time
(see Section VI-E). While the slower inference speed was
acceptable on the static tasks we evaluated, future work should
explore approaches for speeding up inference of autoregressive
VLA models to enable them to solve highly dynamic tasks.
There is a large literature of inference optimizations for large
language models that can be readily applied to autoregressive
VLAs.
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APPENDIX

A. Data Mixture for Training Universal Tokenizer

The training mixture for the universal tokenizer mainly
consists of the π0 [7] datasets described in Section VI-F.
For many datasets, we include versions with multiple action
space parametrizations: joint space, end-effector world frame,
and end-effector camera frame, to ensure the generality of the
resulting tokenizer. Open X-Embodiment [52], DROID [38],
and Bridge V2 [60] are included in their original form. Before
tokenization, all actions are padded to 32 dimensions to
accommodate action spaces of different dimensionality.

Dataset Name Morphology Action Space
Control

Frequency
(Hz)

Mixture
Weight

(%)

ARX Bi-manual Joint 50 7.2
AgileX Bi-manual Joint 50 1.8
Fibocom Mobile Joint 50 2.9
Franka FR3 Single arm Joint 20 3.7
Mobile Trossen Mobile Joint 50 2.5
Trossen Biarm Bi-manual Joint 50 4.3
UR5 single Single arm Joint 20 10.3
UR5 biarm Bi-manual Joint 20 2.4
ARX slate mobile Mobile Joint 50 2.5

ARX EE Bi-manual EE 50 3.6
AgileX EE Bi-manual EE 50 0.9
Fibocom EE Mobile EE 50 1.4
Franka FR3 EE Single arm EE 20 1.9
Mobile Trossen EE Mobile EE 50 1.2
Trossen Biarm EE Bi-manual EE 50 2.1
UR5 single EE Single arm EE 20 5.2
UR5 biarm EE Bi-manual EE 20 1.2
ARX slate mobile EE Mobile EE 50 1.2

ARX Cam Bi-manual CamFrame 50 3.6
AgileX Cam Bi-manual CamFrame 50 0.9
Fibocom Cam Mobile CamFrame 50 1.4
Franka FR3 Cam Single arm CamFrame 20 1.9
Mobile Trossen Cam Mobile CamFrame 50 1.2
Trossen Biarm Cam Bi-manual CamFrame 50 2.1
UR5 single Cam Single arm CamFrame 20 5.2
UR5 biarm Cam Bi-manual CamFrame 20 1.2
ARX slate mobile Cam Mobile CamFrame 50 1.2

ALOHA [69] Bi-manual Joint 50 5.0
DROID [38] Single arm Joint 15 11.2
Bridge V2 [60] Single arm EE 5 5.0
OpenX [52] Single arm EE mixed 3.8

B. Trading off Between Compression and Reconstruction

C. Policy Training

We train policies with π0 [7] and OpenVLA [39] backbones.
Depending on the task, policies are conditioned on two or three
inputs images (one third person camera, and one wrist camera
per robot arm), using a resolution of 224x224 pixels. The VLA
backbones encode each image separately via the pre-trained
vision encoder and concatenate the resulting tokens. We addi-
tionally condition on a natural language task instruction and
the robot’s proprioceptive state. Both get tokenized via the
LLMs language tokenizer, treating them as strings. For the pro-
prioceptive state, we apply a bin tokenization pre-processing,
akin to RT-2’s action tokenization [10], discretizing into 256
bins. We then tokenize the integers as part of the text input
sequence. Note that a simple bin tokenization scheme is
sufficient for the proprioceptive state, since it is an input to the
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Fig. 12: Comparison of compression-reconstruction tradeoff
on six training datsets. Any discretization method includes
some hyperparameter that controls the tradeoff between re-
construction fidelity and compression level, represented here
as number of tokens in the output (vocab size is held constant
across all tokenizers). We sweep this hyperparameter (FAST:
rounding scale; naı̈ve tokenization: subsampling frequency;
FSQ: number of latent tokens) and find that FAST performs
well across a wide range of scales. In particular, although it
is less efficient than VQ-based tokenizers at low fidelities, it
exhibits much better scaling to higher reconstruction fidelity,
making FAST much more applicable to fine-grained control
problems. Specific instantiations of each tokenizer (FAST+,
and naı̈ve tokenization without subsampling) are also shown.

policy (as opposed to the action outputs, that require advanced
tokenization as our experiments demonstrate).

We train all policies using a short linear learning rate warm-
up (1k steps) and then a constant learning rate of 5e-5. We
use the AdamW optimizer [45] (b1 = 0.9, b2 = 0.95) without
weight decay, clip gradient magnitude to 1 and compute an
EMA of the network weights with weight 0.999.

During inference, we use simple greedy autoregressive



decoding, except for the bi-manual robot tasks (T-shirt folding,
toast out of toaster, laundry folding), where we found a small
temperature of β = 0.7 to be helpful to get policies to move
out of the home position (since some of the data included
stationary chunks of actions where the robot hovers in the
initial position at the beginning of training episodes).

D. DROID Policy Setup

Here, we provide further details about our DROID training
setup to make it easy for others to reproduce and build on our
results. For training on the DROID dataset, we condition the
policy on a single third-person view and the wrist camera view.
Since DROID provides two external camera views per episode,
we randomly sample the third-person view during training.
Similarly, DROID provides three natural language annotations
for each training episode, and we randomize over them during
training. We do not use the camera calibration information.
Thus, the trained policy can be tested on new viewpoints out
of the box, without the need for calibration. We use joint
velocity and absolute gripper position action space, and train
the policy to predict 15-step action chunks (we execute 8
or 15-step chunks open-loop at inference time). We apply
light data curation: we train only on the episodes marked as
“success” (75k episodes) and filter out any idle timesteps with
all-zero actions during training (usually timesteps in which the
teleoperators reset the position of the VR controller during
data collection). Other than that, we found training on the
full dataset to work well, though there is likely potential for
improving performance with more careful curation. We train
policies for three epochs (240k iterations @ 256 batch size),
which takes approximately 4 days on 8xH100 GPUs for the
3B parameter VLAs we are using.

E. Evaluation Tasks and Training Datasets

Below, we describe all evaluation tasks and training datasets
used in our experiments. We detail the distribution of initial
conditions and scoring criteria.

Libero. We follow the training and evaluation setup of Liu
et al. [43]. We evaluate on the Libero-Spatial, Libero-Object,
Libero-Goal and Libero-Long benchmarking suites and use the
corresponding datasets provided by the authors for training.
We combine all datasets into one dataset with 270k samples,
and train one policy jointly on all to reduce the number of
policies that need to be trained. We train all policies for a
total of 40k iterations (≈ 40 epochs). We use the re-rendered
datasets of Kim et al. [39] for our experiments. Success is
evaluated as a binary criterion per episode.

Table Bussing. This task requires a single UR5e robot
arm to clean a table by bussing objects (a mixture of trash,
plates, and dishes) into a trash can or bussing bin. The training
dataset contains demonstrations in randomized bussing scenes
with approximately 70 objects. The evaluation scene, shown
in Figure 13a, contains twelve objects on a table in an unseen
configuration. The scene was created to stress the capability of
the model, with utensils intentionally placed on top of trash,
objects obstructing each other, and challenging objects such

(a) Table Bussing

(b) T-Shirt Folding

(c) Grocery Bagging

(d) Toast out of Toaster

(e) Laundry Folding

Fig. 13: Sampled initial configurations of evaluation tasks.

as chopsticks, transparent plastic, and reflective containers.
The overall score is calculated as the percentage of objects
correctly thrown away or placed in the bin.

T-Shirt Folding. This task requires a bimanual ARX robot
to fold a t-shirt. The training dataset has demonstrations of
shirt folding with approximately 150 shirts, varying in size,



color, and style. The evaluation scene, shown in Figure 13b,
cycles through five seen shirts of varying colors and sizes,
each starting from a flat configuration. The overall score is
calculated as the percentage of shirts successfully folded, as
determined by a human rater.

Grocery Bagging. This task requires a single UR5e robot
arm to bag groceries. This task was evaluated out-of-the-
box on models pretrained with the full mixture detailed in
Black et al. [7]. The evaluation scene, shown in Figure 13c,
contains seven items (with varying shapes, sizes, materials,
and weights) and a large paper grocery bag. The overall score
is calculated as the percentage of items placed into the grocery
bag.

Toast out of Toaster. This task requires a bi-manual Trossen
ViperX robot, mirroring the ALOHA [70] setup, to take two
pieces of toast out of a toaster and place them onto a plate.
This task was evaluated out-of-the-box on models pretrained
with the full mixture detailed in Black et al. [7]. The evaluation
scene is shown in Figure 13d and the overall score tracks task
progress, with one point for removing each piece of toast and
one point for placing it on the plate, for a score out of four.

Laundry Folding. This task requires a bi-manual ARX
robot to take a piece of clothing, short or t-shirt, out of a
laundry bin and fold it. It is a very challenging task, since
successful folding of the tangled up laundry requires multiple
steps of unfurling and flattening the laundry before folding
can start. Following Black et al. [7], his task was evaluated
with models pretrained on the full π0 training mixture detailed
in Black et al. [7] and fine-tuned with a small amount of
high-quality, task-specific data. The evaluation scene, shown in
Figure 13e, contains five items of clothing randomly placed
in a laundry hamper. The overall score is calculated as the
percentage of clothing successfully folded and stacked, as
determined by a human rater.

DROID. We train on all successful episodes from the
DROID dataset (75k episodes, 21M samples) for 240k it-
erations (≈3 episodes). We apply light data curation (see
Appendix D). After training, we deploy the policy zero-
shot in new scenes, with unseen scene background, camera
angles, and objects. For quantitative evaluation, we design an
evaluation suite with 16 tasks and 44 trials total per policy
(see Table II). Each trial is scored with a task progress rubric
(e.g., 1 point for picking up the correct object, 1 point for
placing it in the correct receptacle). We show example scenes
from the quantitative evaluation in Figure 14. We further run
qualitative tests of the policy across various real-world setups
on three different university campuses (see Figure 7). We do
not measure success rates during these evaluations, but provide
numerous qualitative videos of successes and failures to help
readers get a sense of the policy’s capabilities.

TABLE II: DROID evaluation tasks.

Task Trials

Put the spoon in the dish rack 4
Put carrot in bowl 4
Put plate in dish rack 2
Wipe the table 2
Put the plate on the table 2
Clean up the table 2
Close the drawer 4
Put the stapler on the notebook 2
Put stapler in the drawer 4
Clean the whiteboard 2
Put the marker in the cup 4
Put the black sponge in the blue bowl 2
Put the red bottle in the black bowl 2
Put the watermelon in the purple bowl 2
Move the watermelon from the purple bowl to the blue bowl 2
Put the tape in the purple bowl 2
Put the water bottle on the left side of the table 2

Total 44

Fig. 14: Setups used for quantitative DROID evaluation.
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Fig. 15: Comparison of π0-FAST and compute-matched
diffusion π0 [7] generalist policies. π0-FAST clearly outper-
forms the diffusion VLA when trained with the same amount
of training compute, due to its faster convergence. Reported:
mean and 95% CI.



TABLE III: Universal Tokenizer Evaluation Datasets.

Morphology Dataset Name Platform Action Space Action Dim Control Frequency Task

Single Arm

SOAR [74] WidowX EEF 7 5 Pick/place

DROID-Eval EEF [38] Franka EEF 7 15 Pick/place

DROID-Eval Joint [38] Franka Joint 8 15 Pick/place

SERL [46] Franka EEF 7 10 Insertion

π Table Bussing [7] UR5 Joint 8 20 Pick/place

Dexterous

NYU DexHand [30] ALLEGRO Joint+EEF 30 16 Dexterous manipulation

Berkeley DexHand [54] ALLEGRO Joint 16 20 In-hand manipulation

Berkeley DexArm [58] xArm+ALLEGRO Joint 23 20 Dextrous pick/place

HATO [42] UR5+Psyonic Hand EEF+Joint 24 10 Dextrous pick/place

UMI
UMI [16] UMI EEF 7 20 Pick/place

UMI on Legs [31] UMI EEF 7 20 Whole-body manipulation

Humanoid
HumanPlus [26] Unitree H1 Joint 40 50 Whole-body manipulation

UCSD TeleVision [14] Unitree H1 w/Neck Joint 28 60 Manipulation+active perception

Navigation Waymo [23] Waymo Car 2D delta 2 10 Autonomous Driving
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